人臍血基質(zhì)細(xì)胞聯(lián)合移植促進(jìn)造血細(xì)胞歸巢植入及支持造血重建的實(shí)驗(yàn)研究
[Abstract]:Hematopoietic microenvironment (HIM) is an internal environment that supports and regulates the growth and development of haemopoietic stem/progenitor cell (HSPC). The integrity of its structure and function is an important link in maintaining normal hematopoietic function. Cells may participate in the self-renewal, proliferation, differentiation and homing of hematopoietic stem cells (HSCs), secrete hematopoietic growth factor (HGF) and extracellular matrix (ECM) through the formation of "niches" for the growth of hematopoietic stem cells (HSCs), and play an important role in immune regulation. To investigate the effect of stromal cells on hematopoietic function of bone marrow, it is of great theoretical value and practical significance to treat hematopoietic damage by repairing or reconstructing the normal function of bone marrow microenvironment.
Stromal cells, derived from mesenchymal stem cells (MSCs), are a complex heterogeneous group of cells including fibroblasts, endothelial cells, osteoblasts, adipocytes, macrophages and reticular cells. Human bone marrow stromal cells (hBMSCs) have been cultured in vitro by Dexter since 1977. After successful transplantation, hBMSCs were studied in depth. Experiments and clinical practice proved that hBMSCs in vitro culture and amplification combined with HSC reinfusion is an effective method for reconstructing hematopoietic function. However, the source of hBMSCs is limited. Bone marrow collection increases donor pain and risk, and cell number and proliferation and differentiation potential decrease with the increase of donor age. Autologous transplantation has abnormal stromal cells, and allograft-versus-host disease (GVHD) and other immune-related problems may occur in autologous transplantation, which limits the wide use of hBMSCs in clinical practice.
Human umbilical cord blood-derived stromal cells (hUCBDSCs) and umbilical cord blood have long been engaged in the clinical treatment of malignant hematopoietic diseases. Previous studies have shown that specific cytokines can effectively amplify hUCBDSCs. The amplified hUCBDSCs are similar to hBMSCs in cell composition and immunophenotype. They can secrete and express many cytokines and possess the basic characteristics of hematopoietic stromal cells. The culture system with hUCBDSCs as trophoblast can effectively support umbilical cord blood. CD34+ cell proliferation in vitro, especially for colony forming unit-megakaryocte (CFU-Mk) formation, is significantly superior to that of hBMSCs, suggesting that hUCBDSCs may play an important role in promoting the proliferation, differentiation and maturation of megakaryocytes. Based on the above analysis, two different culture systems of stromal cell trophoblasts (hUCBDSCs and hBMSCs) were established to observe the effects of two kinds of stromal cells on human umbilical cord mononuclear cells (HUCBDSCs) by CCK-8 and Transwell methods. The effects of proliferation, adhesion and migration of R cells, hUCB-MNCs, and the expression of homing-related molecules mRNA in hUCBDSCs were detected by RT-PCR. On this basis, the model of hematopoietic microenvironment irradiation injury in BABL/c mice was established. The two methods were compared and observed by single transplantation of hUCB-MNCs or co-transplantation of two different stromal cells. Stromal cells promote the homing and implantation of hematopoietic cells in vivo, reconstruct the hematopoietic microenvironment and support the hematopoietic reconstruction.
Method:
1. To construct the trophoblast culture system of hUCBDSCs and hBMSCs in vitro. CCK-8 method and Transwell method were used to detect the effects of two kinds of stromal cells on the proliferation, adhesion and migration of hUCB-MNCs in vitro; RT-PCR was used to detect the expression of homing-related factors (SDF-1, CXCR-4, ICAM-1, VCAM-1, HCAM, PECAM-1, Fn) mRNA. Situation.
2. Inbred BABL/c mice were subjected to different doses of hUCB-MNCs (2,4,6 or 8 65507
3. HUCB-MNCs were pre-stained with CM-DiI fluorescent dye. After irradiation, BABL/c mice received either single transplantation of hUCB-MNCs (2 x106/mouse) or co-transplantation of two different stromal cells (2 x106/mouse). Laser confocal microscopy was used to observe the migration and distribution of fluorescent labeled hUCB-MNCs in mice, and to compare the hematopoietic cells of each group. Nesting rate.
4. After irradiation, mice received either single transplantation of hUCB-MNCs (2 *10~6/mouse) or co-transplantation of two different stromal cells (2 *10~6/mouse). Survival was observed and survival rate was recorded. The recovery of peripheral blood picture was dynamically detected, and pathological changes of bone marrow tissue were observed. Rat bone marrow fibroblast colony forming unit (CFU-F), spleen colony forming unit (CFU-S), granulocyte/macrophage colony forming unit (CFU-GM) and megakaryocyte colony forming unit (CFU-Mk) yields.
Result:
Effect of 1. hUCBDSCs on proliferation, adhesion and migration of cord blood mononuclear cells in vitro
Compared with hUCB-MNCs co-culture group and hUCB-MNCs single culture group, hUCB-MNCs proliferation ability was significantly enhanced under the co-culture condition of hUCB-MNCs. Both stromal cells could promote the adhesion of hUCB-MNCs, and the migration ability of hUCB-MNCs after co-culture was also significantly stronger (P 0.05) than that of control without stromal cell support. Implantation of closely related adhesion molecules, cytokines and receptors (SDF-1, CXCR-4, ICAM-1, VCAM-1, HCAM, PECAM-1, Fn) mRNA reveals their important role in the homing and implantation of hematopoietic cells in vivo.
2. hUCBDSCs combined transplantation promotes homing and implantation of hematopoietic cells
After irradiation, mice received different doses of hUCB-MNCs (2,4,6 or 8 65507 When low-dose hUCB-MNC was infused, the implantation rate of co-transplantation of hUCBDSCs was significantly higher than that of single transplantation. And single transplantation group showed that hUCBDSCs could promote hematopoietic cells homing to bone marrow in early stage after transplantation.
3.hUCBDSCs combined transplantation to repair damaged microenvironment and support hematopoietic reconstitution
In the co-transplantation group, the platelet inhibition was mild and the platelet recovery was rapid, and the leukocytes in the co-transplantation group returned to the pre-irradiation level 21 days after transplantation. There was no significant difference in hemoglobin between the two groups. hUCBDSCs combined transplantation promoted bone marrow tissue recovery, reconstructed the damaged microenvironment, and increased the CFUs (CFU-F, CFU-S, CFU-GM, CFU-Mk) production rate, especially the number of CHU-Mk increased compared with the hUCBDSCs combined transplantation. S plays an important role in promoting proliferation and differentiation of megakaryocytes.
Conclusion:
1. hUCBDSCs can promote the proliferation, adhesion and migration of umbilical cord blood mononuclear cells, and the proliferation-promoting ability is stronger than that of H BMSCs. Human umbilical cord blood stromal cells significantly express the mRNA of some homing-related factors.
2. Combined transplantation of hUCBDSCs can increase the rate of hematopoietic implantation in mice after transplantation, especially when the dosage of hematopoietic cells is low.
3. hUCBDSCs combined transplantation can promote early migration of hematopoietic cells, homing to bone marrow and spleen, and improving homing efficiency.
4. hUCBDSCs combined transplantation can improve the survival of mice, promote hematopoietic reconstitution after transplantation and repair the damaged microenvironment.
【學(xué)位授予單位】:第三軍醫(yī)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2011
【分類號(hào)】:R329
【共引文獻(xiàn)】
相關(guān)期刊論文 前10條
1 杜馥曼;楊玉芝;馮琨;王丹;;Galectin-3和CD44v6在甲狀腺癌中的表達(dá)及臨床價(jià)值[J];標(biāo)記免疫分析與臨床;2010年02期
2 冉茜;李忠俊;張曦;梁雪;陳幸華;;CRIF1介導(dǎo)白血病骨髓基質(zhì)細(xì)胞誘導(dǎo)Jurkat細(xì)胞周期阻滯的探討[J];中國(guó)輸血雜志;2010年12期
3 付仲鷹,全成實(shí),郭曉峰;喉癌轉(zhuǎn)移中黏附分子CD44v6蛋白表達(dá)和胞內(nèi)環(huán)素α、βmRNA的表達(dá)[J];吉林大學(xué)學(xué)報(bào)(醫(yī)學(xué)版);2004年06期
4 Sunyoung Park;Soyoung Cheon;Daeho Cho;;The Dual Effects of Interleukin-18 in Tumor Progression[J];Cellular & Molecular Immunology;2007年05期
5 高蕾;陳幸華;張誠(chéng);張曦;高力;梁雪;龔奕;彭賢貴;郝磊;王慶余;;BALB/c-nu/nu裸鼠造血微環(huán)境損傷模型的建立[J];第三軍醫(yī)大學(xué)學(xué)報(bào);2009年05期
6 劉穎;陳幸華;張曦;高蕾;張誠(chéng);郝磊;馮一梅;;人臍血源基質(zhì)細(xì)胞聯(lián)合造血細(xì)胞共移植促進(jìn)造血重建與植入的研究[J];第三軍醫(yī)大學(xué)學(xué)報(bào);2010年09期
7 劉穎;陳幸華;張曦;高蕾;張誠(chéng);馮一梅;;人臍血源基質(zhì)細(xì)胞對(duì)造血細(xì)胞歸巢植入能力的影響[J];第三軍醫(yī)大學(xué)學(xué)報(bào);2011年05期
8 李明;陳宏;蔡德鴻;;間充質(zhì)干細(xì)胞在移植免疫中的作用及其臨床應(yīng)用[J];廣東醫(yī)學(xué);2007年12期
9 葉靜梅;王春燕;;間充質(zhì)干細(xì)胞在HLA半相合移植中的應(yīng)用[J];國(guó)外醫(yī)學(xué)(內(nèi)科學(xué)分冊(cè));2006年08期
10 韓亮;黃容琴;蔣晨;;診斷兼治療的多功能腫瘤靶向納米遞釋系統(tǒng)[J];國(guó)際藥學(xué)研究雜志;2011年05期
相關(guān)博士學(xué)位論文 前10條
1 孫曉春;不同來(lái)源間質(zhì)干細(xì)胞的分離及多種藥物因素對(duì)其生物學(xué)特性的影響[D];江蘇大學(xué);2010年
2 樊宏斌;間充質(zhì)干細(xì)胞對(duì)人食管鱗癌細(xì)胞的抑制作用及其機(jī)制探討[D];北京協(xié)和醫(yī)學(xué)院;2009年
3 杜世偉;不同途徑移植人骨髓間充質(zhì)干細(xì)胞治療大鼠腦缺血卒中的實(shí)驗(yàn)研究[D];北京協(xié)和醫(yī)學(xué)院;2011年
4 李?yuàn)櫮?受體骨髓間充質(zhì)干細(xì)胞抑制大鼠異位小腸移植急性排斥反應(yīng)機(jī)制的實(shí)驗(yàn)研究[D];天津醫(yī)科大學(xué);2011年
5 馮一梅;高表達(dá)SDF-1人臍血源基質(zhì)細(xì)胞經(jīng)PECAM-1介導(dǎo)調(diào)控巨核細(xì)胞增殖遷移的機(jī)制研究[D];第三軍醫(yī)大學(xué);2011年
6 李忠俊;白血病骨髓基質(zhì)細(xì)胞對(duì)柔紅霉素作用下Jurkat細(xì)胞凋亡及基因表達(dá)的影響[D];第三軍醫(yī)大學(xué);2005年
7 吳江;鈦顆粒負(fù)荷對(duì)假體松動(dòng)過(guò)程中主要細(xì)胞功能的影響及其機(jī)理研究[D];四川大學(xué);2005年
8 何旭;低氧促進(jìn)人骨髓間充質(zhì)干細(xì)胞成管、內(nèi)皮分化及其在血管生成過(guò)程中的作用[D];吉林大學(xué);2006年
9 邊莉;HGF基因修飾的MSC生物學(xué)特性及免疫調(diào)控作用研究[D];中國(guó)人民解放軍軍事醫(yī)學(xué)科學(xué)院;2006年
10 林云鋒;脂肪基質(zhì)細(xì)胞多向分化能力及其在組織工程中應(yīng)用的研究[D];四川大學(xué);2006年
相關(guān)碩士學(xué)位論文 前10條
1 王曉輝;卵巢上皮性癌中p-選擇素和nm23蛋白的表達(dá)及臨床意義[D];吉林大學(xué);2011年
2 任海燕;臍帶間充質(zhì)干細(xì)胞對(duì)再生障礙性貧血患者造血負(fù)調(diào)控因子的調(diào)節(jié)作用[D];昆明醫(yī)學(xué)院;2011年
3 李俊男;妊娠對(duì)脂肪干細(xì)胞增殖活性的影響[D];昆明醫(yī)學(xué)院;2011年
4 鄒穎;硒對(duì)人間充質(zhì)干細(xì)胞和臍靜脈內(nèi)皮細(xì)胞一氧化氮信號(hào)的調(diào)節(jié)作用[D];暨南大學(xué);2011年
5 李佳縈;曲古抑菌素A促進(jìn)小鼠骨髓間充質(zhì)干細(xì)胞分化為胰島素分泌細(xì)胞[D];暨南大學(xué);2011年
6 韓夏;大鼠骨髓間充質(zhì)干細(xì)胞血紅素加氧酶-1過(guò)表達(dá)對(duì)其IL-10分泌影響研究[D];蘭州大學(xué);2011年
7 徐傳軍;脂肪瘤吸除術(shù)中終末吸除質(zhì)硬腫瘤組織性質(zhì)及其在術(shù)后復(fù)發(fā)中的可能作用[D];河北醫(yī)科大學(xué);2011年
8 孫明玲;ATG為主的免疫抑制劑治療重型再障的臨床研究[D];新疆醫(yī)科大學(xué);2011年
9 李鵬;層層自組裝多功能納米基因載體的研究[D];山東大學(xué);2011年
10 吳澤霖;急性白血病兒童骨髓間充質(zhì)干細(xì)胞與臍血來(lái)源NK細(xì)胞的相互作用體內(nèi)外初步實(shí)驗(yàn)研究[D];廣州醫(yī)學(xué)院;2010年
,本文編號(hào):2225577
本文鏈接:http://sikaile.net/xiyixuelunwen/2225577.html