神經(jīng)元限制性沉默因子對CART基因轉(zhuǎn)錄的調(diào)控作用及其機制研究
[Abstract]:Stem cells are a kind of cells with strong self-renewal and multi-directional differentiation potential. They can be induced to differentiate into mature neurons and islet cells under specific conditions in vitro, thus providing excellent seed cells for cell transplantation in the treatment of diabetes, Parkinson's syndrome, stroke and other diseases. However, they have important clinical application value. In the process of stem cells differentiating into neurons and islet cells, there are a series of problems, including inefficient differentiation, immature function of differentiated cells, etc. In the final analysis, the mechanism of differentiation is still unclear. NCER factor, NRSF; also known as RE-1 silencing transcription factor (REST) plays an important role in the differentiation of stem cells into neurons and islet cells. In addition, our laboratory studies have shown that NRSF regulates neuronal and islet-related target genes such as insulin, cocaine and amphetamine-regu. Based on this work, further study on the transcriptional regulation mechanism of NRSF on its target genes will help us better understand the role of NRSF in the differentiation of stem cells into neurons or islet cells and the maintenance of function of mature cells, so as to guide stem cells to mature nerves in the future. Cell or islet cell differentiation provides new ideas.
NRSF is a protein with nine Cys2/His2 zinc finger structures. It has one DNA binding domain, one lysine-rich domain, one proline-rich domain and two transcription inhibitory domains, N-terminal inhibitory domain and C-terminal inhibitory domain. It is widely expressed in embryonic stem cells (ES cells), neural stem cells (neural stem cells). Stem cells, NSCs, and non-neural cells, which are not expressed in most differentiated neurons, recruit different inhibitory complexes by binding to specific acting elements NRSE (neuron-restrictive silencer element, NRSE; also known as Repressor Element, RE1) to play a role in target genes such as type II sodium channel, SCG10, connectin 36 (Connex). In36) plays an important role in the maintenance of ES cell totipotency and self-renewal, early embryonic development, stem cell differentiation into neurons and islet cells.
CART is a new type of neuropeptide, which is distributed in the central and peripheral nervous system, adrenal glands, islets and other endocrine tissues. Many studies have shown that CART is involved in many physiological processes, such as food intake and obesity, stress, energy metabolism, neuroprotection and so on. The research mainly focuses on the localization, processing and function exertion of CART peptides. There are few studies on the transcriptional regulation of CART gene including transcription factors, regulatory elements and the neuroprotective mechanism of CART peptides. This system will provide powerful theoretical guidance for basic research and clinical treatment of diabetes, nervous system diseases and so on.
Our previous work has shown that CART gene is one of the target genes for NRSF. The NRSE-like motifs in the core promoter region of CART gene can specifically bind to NRSF sequence to regulate the transcriptional inhibition of CART gene. NRSE has a common NRSE-like motif that is very similar to each other and is conserved among species. Does this sequence also participate in the transcriptional regulation of CART gene? How does it coordinate with NRSE in the promoter region of CART gene to regulate the transcriptional regulation of CART gene? Only the positive regulatory pathway of cAMP/PKA/CREB is clear. So, how does the negative regulatory system of NRSF-NRSE and the positive regulatory system of cAMP/PKA/CREB compete to regulate the CART gene and jointly regulate the transcriptional level of CART gene?
This study mainly consists of three parts:
First, the transcriptional regulation of CART gene by intron sequence.
By using rVista software, we analyzed the intron sequences of human, rat and mouse CART genes retrieved from NCBI database of the National Center for Biomedical Information of the United States, and predicted a series of elements that might regulate the expression of CART genes, including ZF5, E47, NRSE, AREB6, and so on. Combining with previous work, we identified human, large and large. In order to investigate the transcriptional regulation of CART gene by the first intron of CART gene and its NRSE elements, we studied the NRSE-like motif of the first intron of CART gene in mice. Basic-CART32 (P-Luc), a luciferase reporter vector pGL3-Basic-CART32-Intron (P-Luc-I), pGL3-Basic-CART32-NRSEnon Intron (P-Luc-tI), was constructed and co-transfected into NTera2/CloneD1 cells with the luciferase-containing plasmid pRL-CMV. The results showed that the transcriptional activity of P-Luc-I was down-regulated by 57.9% (P 0.05) compared with the control group, indicating that the first intron sequence of CART gene was involved in the negative regulation of CART gene transcription. The activity of CART gene was up-regulated by 53.8% (P 0.05), suggesting that the intron of CART gene plays a negative role in the transcriptional regulation of CART gene through NRSE in its region. It was confirmed that the binding between NRSF and intron NRSE existed in the natural chromatin region.
Two, the regulatory effect of NRSF on CART gene transcription and its mechanism.
In the first part of this paper, we carried out a preliminary study on the NRSE-like sequence of the first intron region of the CART gene. In order to further explore how NRSF regulates the transcription of the gene through the promoter and intron sequences of the CART gene, we carried out a preliminary study on the NRSE-like sequence of the first intron region of the CART gene. Series of work. Electrophoretic mobility shift assay (EMSA) confirmed that the NRSE motif of CART gene promoter region and the first intron region could specifically bind to NRSF in vitro. Chromatin immunoprecipitation assay showed that NRSF and NRSE junction occurred in different NRSF expression cell lines. In order to understand how NRSF regulates the transcription of CART gene through promoter and intron sequences, we used CART promoter-luciferase reporter vectors P-Luc, P-Luc-tI, P-Lu. At the same time, we constructed the CART promoter-luciferase reporter vector pGL3-Basic-NRSEnon promoter (tP-Luc) and the luciferase reporter vector pGL3-Basic-NRSEnon promoter-N (tP-Luc-I), and the luciferase reporter vector pGL3-Basic-NRSEnon promoter-N (pGL3-Basic-NRSEnon Promoter-N) with or without NRSE motif deletion at the 3'end of the luciferase gene. RSEnon Intron (tP-Luc-tI), these reporter vectors were transfected into HeLa cells. The results of luciferase activity assay showed that CART gene intron and promoter cooperated with the negative transcriptional regulation of CART gene, and NRSF-NRSE in promoter region played a stronger negative transcriptional regulation on CART gene. Co-transfection Luciferase Report Similar results were also obtained in SK-N-SH cells with low NRSF expression plasmid pcDNA3.1-NRSF. In order to verify whether the negative transcriptional regulation of the CART gene promoter and the first intron depended on the NRSE elements in their respective regions, we originally contained the NRSE motif of the double-copy CART promoter (normal or normal). On the basis of the mutant sequence, a double-copy CART intron NRSE motif (normal or mutant) was inserted at the 3'-terminal of the luciferase gene. These luciferase reporter vectors were co-transfected into HeLa cells and SK-N-SH cells with the pRL-CMV plasmid containing marine luciferase, respectively. The results showed that the negative regulation of CART gene transcription by the promoter and the first intron region depended on the synergistic effect of NRSE elements in their respective regions.
Three, the positive and negative regulation system of CART gene expression and its mechanism of action.
To further investigate how the NRSF-NRSE negative regulatory system and the cAMP/PKA/CREB positive regulatory system competently regulate the expression of CART gene, we first co-transfected P-Luc-I and compared the plasmid pcDNA3.1-NRSF (100ng, 200ng, 400ng/2 *105 cells) with the plasmid pcDNA3.1 or the concentration gradient NRSF expression plasmid pcDNA3.1-NRSF (100ng, 200ng, 400ng/2 *105 cells) to detect the luciferase activity. The results showed that transfected pcDNA3.1-NRSF 400ng/2 *105 cells could inhibit the positive regulation of Forskolin/cAMP/PKA/CREB on CART, suggesting that the negative regulation of NRSF-NRSE induced by high level of NRSF expression could inhibit the function of positive regulation system of cAMP/PKA/CREB.
On this basis, we established an oxygen-glucose deprivation (OGD) model of neurons and carried out related experiments in combination with the function of CART peptides to reduce cell death induced by ischemia/hypoxia. In this model, we can further investigate whether changes in NRSF expression can cause changes in CART gene expression and affect the role of cAMP/PKA/CREB positive regulatory pathway.
SK-N-SH cells inoculated in 12-well plates were placed in a hypoxic glove box at 37 C, 0.3% O2, 95% N 2 for 3 hours to simulate the ischemia/hypoxia environment in vitro. The expression of NRSF and CART in the treated SK-N-SH cells was detected by RT-PCR and Western Blot after 24 h of reoxygenation, 48 h of reoxygenation, and the apoptosis rate was detected by flow cytometry. The results showed that the expression of NRSF was up-regulated and the expression of CART was down-regulated after reoxygenation in SK-N-SH cells treated with OGD, and the apoptosis rate was up-regulated with the prolongation of reoxygenation time. In the study of the interaction between cAMP/PKA/CREB and NRSF-NRSE regulatory system, we treated SK-N-SH cells with OGD for 3 hours. Comparing with the co-transfection of pcDNA3.1 or NRSF expression plasmid pcDNA3.1-NRSF, luciferase activity assay showed that OGD treatment could induce the up-regulation of NRSF expression, but could not inhibit the positive regulation of Forskolin/cAMP/PKA/CREB on CART. When exogenous transfection of NRSF expression plasmid 200 ng, 400 ng/2*105 cells The results of flow cytometry also indicated that the negative regulation of NRSF-NRSE induced by high level of NRSF expression could inhibit the positive regulation of cAMP/PKA/CREB.
In summary, we demonstrated that the NRSE-like motifs in the first intron of CART gene play a negative role in the transcriptional regulation of CART gene by specific binding to NRSF protein through bioinformatics analysis, electrophoretic mobility change assay, chromatin immunoprecipitation assay, and luciferase reporter system activity assay. CART gene promoter, the first intron, depends on the interaction of NRSE elements in their respective regions to play a synergistic role in the transcriptional repression of CART gene.
【學(xué)位授予單位】:中國人民解放軍軍事醫(yī)學(xué)科學(xué)院
【學(xué)位級別】:博士
【學(xué)位授予年份】:2011
【分類號】:R346
【相似文獻】
相關(guān)期刊論文 前10條
1 李丹妮;趙越;;ERα的輔調(diào)節(jié)因子與乳腺癌關(guān)系的研究進展[J];生命科學(xué);2011年08期
2 孟希亭;林晨;梅佳;王海娟;馬飛;張金龍;張穎;錢海利;;活體成像系統(tǒng)檢測攜熒光素酶增殖缺陷型腺病毒在小鼠體內(nèi)的表達和分布[J];中國腫瘤生物治療雜志;2011年04期
3 劉竹;艾青;蘭歡;吉穎;楊正梅;何江宜;郝曉璐;宋方洲;卜友泉;;人ACER2基因啟動子的鑒定與初步分析[J];中國細胞生物學(xué)學(xué)報;2011年06期
4 高原;惠寧;劉善榮;;長鏈非編碼RNA的研究進展[J];第二軍醫(yī)大學(xué)學(xué)報;2011年07期
5 李小雷;伍志強;馬曉星;趙亞力;韓為東;;抑制LRP16基因的表達顯著下調(diào)TNF-α介導(dǎo)的NF-κB轉(zhuǎn)錄活性[J];中國生物化學(xué)與分子生物學(xué)報;2011年07期
6 ;第2個誘導(dǎo)腎癌的基因被發(fā)現(xiàn)[J];生物學(xué)通報;2011年03期
7 侯德富;關(guān)勇軍;關(guān)瑞;歐陽詠梅;余艷輝;陳主初;;人NPCEDRG基因啟動子的克隆及CCAAT/NFY結(jié)合位點初步分析[J];生物化學(xué)與生物物理進展;2011年08期
8 ;英科學(xué)家首次測出活體心臟能量水平[J];生命世界;2006年11期
9 李夏雨;沈守榮;武明花;李小玲;熊煒;盧建紅;周鳴;馬健;向娟娟;曾朝陽;向波;周艷宏;肖嵐;周厚德;范松青;李桂源;;多基因遺傳性腫瘤不同階段轉(zhuǎn)錄組學(xué)調(diào)控規(guī)律及其分子機制[J];中南大學(xué)學(xué)報(醫(yī)學(xué)版);2011年07期
10 方煥;朱傳武;陳明;;hTERT轉(zhuǎn)錄調(diào)控及其在肝細胞癌治療中的研究進展[J];臨床肝膽病雜志;2011年09期
相關(guān)會議論文 前10條
1 徐衛(wèi)紅;高瑞蘭;陳小紅;錢煦岱;吳超群;;三七皂苷對造血細胞AP-1族轉(zhuǎn)錄調(diào)控蛋白NF-E2、c-Jun和c-Fos的誘導(dǎo)作用[A];第九屆全國實驗血液學(xué)會議論文摘要匯編[C];2003年
2 李園園;王壘;陸長德;;人增殖細胞核抗原與細胞周期相關(guān)的轉(zhuǎn)錄調(diào)控研究[A];華東六省一市生物化學(xué)與分子生物學(xué)會2003年學(xué)術(shù)交流會論文摘要集[C];2003年
3 楊蘭蘭;劉先俊;;NUAK1—NFkB通路新轉(zhuǎn)錄調(diào)控或共調(diào)控因子[A];重慶市生物化學(xué)與分子生物學(xué)學(xué)術(shù)會議論文摘要匯編[C];2009年
4 鮑永利;烏垠;于春雷;孟祥穎;孫穎;李玉新;;人多藥耐藥基因MDR1啟動子克隆及轉(zhuǎn)錄調(diào)控的初步研究[A];吉林省第六屆生命科學(xué)大型學(xué)術(shù)報告會論文集[C];2008年
5 高瑞蘭;馬逢順;吳超群;許家鸞;B.H.Chong;牛泱平;苗青;王京霞;金錦梅;;人參皂苷組分治療難治性血液病及對造血相關(guān)基因的轉(zhuǎn)錄調(diào)控[A];第四次全國中西醫(yī)結(jié)合中青年學(xué)術(shù)研討會論文集[C];2002年
6 徐衛(wèi)紅;高瑞蘭;陳小紅;鄭茵紅;;三七皂苷對多種造血相關(guān)轉(zhuǎn)錄調(diào)控蛋白的誘導(dǎo)作用[A];第六屆全國中西醫(yī)結(jié)合血液病學(xué)術(shù)會議論文匯編[C];2002年
7 劉兵;毛寧;;胚胎造血發(fā)育的轉(zhuǎn)錄調(diào)控[A];第九屆全國實驗血液學(xué)會議論文摘要匯編[C];2003年
8 孔輝;王瑩;朱慶林;余擎;Gabriele Mues;Rena N.D'Souza;;牙齒發(fā)育過程中Pax9和Msx1對BMP4轉(zhuǎn)錄調(diào)控作用的研究[A];全國第八次牙體牙髓病學(xué)學(xué)術(shù)會議論文匯編[C];2011年
9 高瑞蘭;馬逢順;吳超群;許家鸞;B.H.Chong;牛泱平;苗青;王京霞;金錦梅;;人參皂苷對造血相關(guān)基因的轉(zhuǎn)錄調(diào)控及治療難治性血液病[A];第九屆全國實驗血液學(xué)會議論文摘要匯編[C];2003年
10 高春芳;王皓;徐玲玲;趙文靜;孔憲濤;;人α1(Ⅰ)膠原基因轉(zhuǎn)錄調(diào)控研究[A];中國免疫學(xué)會第四屆學(xué)術(shù)大會會議議程及論文摘要集[C];2002年
相關(guān)重要報紙文章 前10條
1 衣曉峰;哈醫(yī)大一院系列研究阿爾茨海默病關(guān)聯(lián)基因[N];中國醫(yī)藥報;2007年
2 王春;弄潮正當(dāng)時[N];科技日報;2004年
3 王振嶺;誘發(fā)心肌肥厚新基因被發(fā)現(xiàn)[N];健康報;2005年
4 記者 陳勇 曉安;“改裝”艾滋病毒成克癌“導(dǎo)彈”[N];新華每日電訊;2005年
5 記者 李紅;讓科學(xué)和藝術(shù)相結(jié)合[N];科技日報;2000年
6 本報記者 李嬋;克隆豬身上發(fā)熒光[N];北京科技報;2004年
7 王坤;我國基因剔除研究取得重大進展[N];中國醫(yī)藥報;2000年
8 王世恩 特約記者 王坤;四醫(yī)大建立基因剔除動物模型[N];解放軍報;2000年
9 記者 周穎;中澳合作開發(fā)中草藥治療血液病取得進展[N];中國中醫(yī)藥報;2001年
10 通訊員 王坤;我國基因剔除技術(shù)取得重要進展[N];科技日報;2000年
相關(guān)博士學(xué)位論文 前10條
1 張靜;神經(jīng)元限制性沉默因子對CART基因轉(zhuǎn)錄的調(diào)控作用及其機制研究[D];中國人民解放軍軍事醫(yī)學(xué)科學(xué)院;2011年
2 劉智慧;寡肽(OGP、HIV-1 tat~[47-57])的合成、聚合及功能研究以及NRSF/REST在轉(zhuǎn)錄調(diào)控方面的研究[D];中國科學(xué)院研究生院(上海生命科學(xué)研究院);2004年
3 李軍林;MINT蛋白同源二聚體形成及對其介導(dǎo)的轉(zhuǎn)錄抑制作用的拮抗[D];第四軍醫(yī)大學(xué);2005年
4 喬文濤;牛泡沫病毒3026反式激活因子Borf1的特征及作用機制初探[D];南開大學(xué);2004年
5 顏峻;Cyclin D3參與轉(zhuǎn)錄調(diào)控,p110C誘導(dǎo)凋亡及活性寡糖的研究[D];復(fù)旦大學(xué);2004年
6 王晶;裂殖酵母核糖體L32-2蛋白潛在轉(zhuǎn)錄調(diào)節(jié)調(diào)節(jié)作用的研究[D];南京師范大學(xué);2006年
7 盧建雄;營養(yǎng)和激素對原代培養(yǎng)大鼠脂肪細胞脂肪形成的調(diào)控及機理研究[D];西北農(nóng)林科技大學(xué);2005年
8 王繼;血管生成素與堿性成纖維生長因子之間相互作用關(guān)系及其分子機制的研究[D];東北師范大學(xué);2009年
9 朱慧芳;Y家族DNA聚合酶對化學(xué)致癌物MNNG應(yīng)答的轉(zhuǎn)錄調(diào)控研究[D];浙江大學(xué);2009年
10 秦瓏;整體調(diào)控子PhoP直接調(diào)控鼠疫耶爾森氏菌胞內(nèi)生存能力的研究[D];中國人民解放軍軍事醫(yī)學(xué)科學(xué)院;2006年
相關(guān)碩士學(xué)位論文 前10條
1 劉鳳鳴;人PDCD4啟動子的確定及其轉(zhuǎn)錄調(diào)控的初步研究[D];山東大學(xué);2010年
2 吳順泉;多個microRNAs通過直接作用于p21的3'UTR調(diào)控p21基因的表達[D];福建醫(yī)科大學(xué);2010年
3 王禮翠;HCV絲氨酸蛋白酶活性監(jiān)測體系的建立[D];中國人民解放軍軍事醫(yī)學(xué)科學(xué)院;2010年
4 翟春媛;豬TLR4基因的突變與功能分析[D];東北農(nóng)業(yè)大學(xué);2010年
5 劉成柏;用生物發(fā)光免疫技術(shù)檢測肝腫瘤標(biāo)志物AFP在肝癌早期診斷中的研究[D];吉林大學(xué);2005年
6 薛麗英;SV40增強子修飾的hTERT核心啟動子靶向轉(zhuǎn)錄熒光素酶載體的構(gòu)建和鑒定[D];天津醫(yī)科大學(xué);2005年
7 黃麗玲;水稻抗病相關(guān)基因OsDR2的分離克隆和功能鑒定[D];華中農(nóng)業(yè)大學(xué);2003年
8 唐建華;降脂藥物篩選模型的建立及其在決明子降脂作用機理研究中的應(yīng)用[D];四川大學(xué);2005年
9 劉艷杰;重組螢火蟲熒光素酶及其穩(wěn)定性研究[D];天津大學(xué);2010年
10 徐燕;熒光素酶作為報告基因的丙型肝炎病毒細胞感染系統(tǒng)的建立和應(yīng)用[D];復(fù)旦大學(xué);2011年
,本文編號:2219090
本文鏈接:http://sikaile.net/xiyixuelunwen/2219090.html