基于NKG2D在安多霖保護微波輻射致免疫損傷中的作用機制研究
[Abstract]:Purpose and significance
With the wide application of microwave technology in military, medical, industrial, communication and agricultural production, organisms are inevitably affected by microwave radiation. Studies have shown that microwave radiation can damage many systems of organisms, and its damage to the immune system and medical protection is one of the hotspots of bioelectromagnetism in recent years. 1. However, the mechanism of microwave-induced immune damage is unknown, and there is no effective drug to prevent microwave-induced immune damage at present. The purpose of this paper is to study the preventive effect and effective dosage of andolin on microwave-induced immune damage, and to explore the role of NKG2D, an important activator receptor of NK cells, in this process, and its effect on N. The role of KG2D/ERK signaling pathway in microwave-induced immune injury is studied, which provides theoretical basis for elucidating the mechanism of microwave-induced immune injury and for the selection and application of effective protective drugs.
Materials and methods
The research is divided into two parts: the whole animal experiment and the in vitro cell experiment.
Firstly, 250 male Wistar rats were divided into two weeks and four weeks prophylaxis test. 125 rats were randomly divided into normal control group, radiation control group and 0.75, 1.5, 3 g / (kg d) drug group. After 2 or 4 weeks of continuous administration, 30 mW / cm 2 microwave irradiation for 15 minutes, 6 h, 7 d, 14 d after radiation (withdrawal), blood cell analyzer was used. The number of white blood cells and lymphocytes in peripheral blood were detected. The serum levels of IL-2 and IL-4 were detected by radioimmunoassay. The peripheral blood CD3, CD4 and CD8 lymphocyte subsets (calculated CD4 +/CD8 +) were detected by flow cytometry. The histological and ultrastructural changes of thymus and spleen were observed by light and electron microscopy. The expression of NKG2D protein in spleen was detected by Western Blot.
2. In vitro cell experiment 1. NK92 cells were randomly divided into sham radiation group and 10,30,50 mW/cm 2 radiation group. NK92 cells were irradiated with 10,30,50 mW/cm 2 microwave for 5 minutes. The morphology of NK92 cells was observed by inverted phase contrast microscope at 1 h and 24 h after irradiation. Cell apoptosis, necrosis and cell cycle were detected by flow cytometry. NK92 cells were detected by lactate dehydrogenase method. NK92 cells were injured by microwave irradiation for 5 min, 1 h, 6 h and 12 h after irradiation. Real-time PCR, Western Blot and image analysis were used to detect the expression of NKG2D, perforin protein and mRNA, as well as ERK1/2, p-ERK1/2. The expression of ERK1/2, p-ERK1/2 and perforin was detected by Western Blot 1 hour after U0126 intervention and microwave irradiation.
experimental result
1. Changes of immune function in peripheral blood of rats: The number of white blood cells and the ratio of CD4~+/CD8~+ in peripheral blood were significantly decreased 14 days after 30 mW/cm2 microwave irradiation (p0.05 or p0.01), and the number of lymphocytes, white blood cells and the ratio of CD4~+/CD8~+ were significantly increased 14 days after irradiation (p0.05 or p0.01). There was no significant difference in peripheral blood leukocyte and lymphocyte counts between the two groups. There was no significant difference in serum IL-2 and IL-4 concentrations between the two groups.
2. Histological and ultrastructural changes of thymus and spleen in rats: 2 weeks after 30 mW/cm2 microwave irradiation, the histological changes of thymus were slight, and the pathological changes of thymus were restored 7 days after irradiation; 6 hours and 7 days after microwave irradiation, the chromatin of lymphocyte nucleus of white pulp was condensed, condensed, margined, the demarcation between red pulp and white pulp was unclear, and the blood sinus of red pulp was congested 14 days after irradiation. The histological structure of thymus and spleen in the drug group was similar to that in the radiation control group. The histological and ultrastructural damage of thymus and spleen in the 1.5 and 3 g / (kg d) drug group was significantly alleviated. The rule is similar to that of 2W preventive test.
Third, the expression of NKG2D in spleen tissue of rats: 6 hours after 30 mW/cm~2 microwave irradiation, the expression of NKG2D in spleen tissue was significantly lower than that of normal control group (p0.01), and the expression of NKG2D in 1.5, 3 g/(kg d) drug group was significantly higher than that of radiation control group (p0.05 or p0.01). There was no significant difference between 0.75 g/(kg d) drug group and radiation control group.
Fourthly, NK92 cell morphology, apoptosis and necrosis rate, cell cycle changes: compared with sham radiation group, 1 h, 10, 30, 50 mW / cm 2 group cells outline irregular, refractive decreased, G0 / G1 phase cell percentage significantly increased (p0.01), S phase cell percentage significantly decreased (p0.05 or p0.01), cell necrosis rate increased (p0.05 or p0.01); The percentage of apoptotic cells in phase I was also significantly increased (p0.05 or p0.01), and the apoptotic rate was increased (p0.05 or p0.01). The apoptotic rate in 30,50 mW/cm~2 group was higher than that in sham radiation group at 24 h, 30,50 mW/cm~2 group (p0.05).
Fifth, NK92 cell killing activity changes: 1 hour after radiation, 30,50 mW/cm 2 group NK92 cell killing activity to K562 cells was significantly lower than the sham radiation group (p0.01), 10 mW/cm~2 group and sham radiation group compared with no significant difference.
6. Changes of NKG2D protein and gene expression in NK92 cells: At 6 hours after 30 mW/cm~2 microwave irradiation, NKG2D mRNA and protein expression in NK92 cells decreased significantly (p0.05 or p0.01). There was no significant difference between the two groups at 12 hours after irradiation.
Seventh, the expression of NKG2D-activated effector molecule perforin protein and gene in NK92 cells: 1 hour after 30 mW/cm 2 microwave irradiation, the expression of perforin mRNA in NK92 cells decreased significantly (p0.05), 1 hour and 6 hours after irradiation (p0.05 or p0.01).
Eighth, the expression of p-ERK1/2 in NK92 cells: 1 hour after 30 mW/cm~2 microwave irradiation, the expression of p-ERK1/2 in NK92 cells was significantly lower than that in sham irradiation group (p0.01). The expression of p-ERK1/2 was not significantly different from that in sham irradiation group at 6 and 12 hours after irradiation.
Ninth, the expression of p-ERK1/2 and perforin after U0126 intervention: After U0126 intervention and 30 mW/cm~2 microwave irradiation, the expression of p-ERK1/2 and perforin in NK92 cells was significantly lower than that in the radiation group (p0.05 or p0.01).
conclusion
First, prophylactic administration of 1.5, 3 g / (kg d) andolin for 2 or 4 weeks has protective effects on immune function and structural damage of immune organs induced by 30 mW/cm~2 microwave irradiation, but prophylactic administration of 0.75 g / (kg d) andolin for 2 or 4 weeks has no obvious protective effects.
Secondly, there was no significant difference in the preventive effect between two weeks or four weeks of continuous administration; the best effective preventive dose of andolin for microwave-induced immune damage was 1.5 g / (kg d); and the best period of administration was two weeks.
Third, 30,50 mW/cm~2 microwave irradiation could damage NK92 cells, which showed irregular cell morphology, increased apoptosis and necrosis rate, decreased proliferation and killing activity. 10 mW/cm~2 microwave irradiation had no significant effect on apoptosis and killing activity of NK92 cells.
Four, 30mW/cm~2 microwave radiation can cause the decrease of NKG2D and perforin protein and gene expression.
Fifthly, the activation of ERK signaling pathway after microwave irradiation can positively regulate the expression of perforin in NK92 cells, and the activation of NKG2D/ERK/perforin pathway is inhibited by microwave irradiation.
Sixthly, the preventive effect of andolin on microwave-induced immune injury may be achieved by promoting NKG2D expression and activating NKG2D/ERK/perforin signaling pathway.
【學(xué)位授予單位】:中國人民解放軍軍事醫(yī)學(xué)科學(xué)院
【學(xué)位級別】:博士
【學(xué)位授予年份】:2012
【分類號】:R363
【相似文獻】
相關(guān)期刊論文 前10條
1 余明東;袁萍;何杰穎;文紅玲;王友良;李東陽;;全氟辛烷磺酸對SD大鼠的免疫損傷作用[J];中南醫(yī)學(xué)科學(xué)雜志;2011年02期
2 郝述霞;王春燕;齊雪松;張偉;張翠蘭;呂慧敏;;安多霖對高功率微波照射大鼠性激素和氧化還原系統(tǒng)的影響[J];輻射防護;2011年05期
3 李鳳銘;李雪雁;喬國勇;栗軍香;;加味玉屏風(fēng)散在~(60)Co γ射線致小鼠免疫損傷中的應(yīng)用研究[J];現(xiàn)代中西醫(yī)結(jié)合雜志;2011年23期
4 李洪杰;黃志遠(yuǎn);;以上腹痛為主要表現(xiàn)的肺炎一例[J];中國療養(yǎng)醫(yī)學(xué);2011年07期
5 郝建梅;李幸倉;王顯著;陳香妮;;疏絡(luò)化纖顆粒治療大鼠肝纖維化的藥效學(xué)研究[J];中西醫(yī)結(jié)合肝病雜志;2011年03期
6 梁亞浩;劉光陵;;兒童腎病綜合征免疫功能狀態(tài)的研究進展[J];中國全科醫(yī)學(xué);2011年24期
7 高鵬;白厚橋;;小兒過敏性紫癜36例臨床分析[J];中國醫(yī)學(xué)文摘(皮膚科學(xué));2011年04期
8 伍紅良;高延永;庾俊雄;陶贊英;劉強和;何曉松;耿宛平;;經(jīng)鼻內(nèi)鏡鼻竇術(shù)后自控靜脈鎮(zhèn)痛對血漿IL-6、IL-10的影響[J];山東大學(xué)耳鼻喉眼學(xué)報;2011年04期
9 李洪宇;王麗明;;急性暴發(fā)性心肌炎診治一例[J];醫(yī)學(xué)信息(上旬刊);2011年06期
10 李元喜;;中醫(yī)藥治療過敏性紫癜的臨床研究進展[J];內(nèi)蒙古中醫(yī)藥;2010年13期
相關(guān)會議論文 前10條
1 廖呂燕;馬玉芳;李健;黃一帆;;“芪苓”制劑多糖對免疫損傷小鼠免疫功能的影響[A];中國畜牧獸醫(yī)學(xué)會2010年學(xué)術(shù)年會——第二屆中國獸醫(yī)臨床大會論文集(上冊)[C];2010年
2 廖呂燕;馬玉芳;李健;黃一帆;;“芪苓”制劑多糖對環(huán)磷酰胺免疫損傷小鼠腸道菌群的影響[A];中國畜牧獸醫(yī)學(xué)會2010年學(xué)術(shù)年會——第二屆中國獸醫(yī)臨床大會論文集(下冊)[C];2010年
3 鄧永貴;郝詠梅;王綿;;胰島免疫損傷與老年2型糖尿病[A];中華醫(yī)學(xué)會第六次全國內(nèi)分泌學(xué)術(shù)會議論文匯編[C];2001年
4 陳永艷;孫lm;魏海明;田志剛;;NK/NKG2D依賴途徑介導(dǎo)HBV轉(zhuǎn)基因鼠肝臟免疫損傷的高度敏感性[A];第六屆全國免疫學(xué)學(xué)術(shù)大會論文集[C];2008年
5 李瑾;;外源性阿片類物質(zhì)免疫損傷的研究進展[A];第四屆全國中西醫(yī)結(jié)合戒毒學(xué)術(shù)研討會教材、論文摘要集[C];2000年
6 徐鷺英;潘建基;鄭崴;楊凌;林少俊;張瑜;張春;林色南;陳傳本;吳君心;;安多霖膠囊配合放射治療鼻咽癌增效作用的研究[A];2007第六屆全國放射腫瘤學(xué)學(xué)術(shù)年會論文集[C];2007年
7 劉開云;郭剛;鄒全明;;幽門螺桿菌碳酸酐酶誘發(fā)的胃黏膜免疫損傷作用研究[A];中華醫(yī)學(xué)會第七次全國消化病學(xué)術(shù)會議論文匯編(上冊)[C];2007年
8 劉劍剛;史大卓;馬魯波;王永炎;;免疫損傷所致兔動脈粥樣硬化血瘀模型的病理形態(tài)改變[A];第六次全國中西醫(yī)結(jié)合血瘀證及活血化瘀研究學(xué)術(shù)大會論文匯編[C];2005年
9 李鳳銘;;玉屏風(fēng)散預(yù)防放射致小鼠T細(xì)胞免疫損傷的研究[A];第六屆全國免疫學(xué)學(xué)術(shù)大會論文集[C];2008年
10 董霽;彭瑞云;王水明;高亞兵;陳建魁;胡文華;馬俊杰;王麗峰;王旭;;安多霖對微波輻射致大鼠外周血細(xì)胞和生化指標(biāo)的影響[A];第十一屆中國體視學(xué)與圖像分析學(xué)術(shù)會議論文集[C];2006年
相關(guān)重要報紙文章 前10條
1 記者 張穎;全國首個抗輻射中藥安多霖膠囊入選國家“863計劃”[N];福建日報;2007年
2 羅剛;多方面免疫損傷是SARS重要發(fā)病機理[N];健康報;2007年
3 余立;國內(nèi)首個抗輻射中藥入選“863”計劃[N];醫(yī)藥經(jīng)濟報;2007年
4 河北省畜牧獸醫(yī)站 李志民 研究員;注射了疫苗 家禽為啥還得病[N];河北科技報;2006年
5 紀(jì)菁;免疫力過高過低都有害[N];醫(yī)藥經(jīng)濟報;2003年
6 劉文山;何謂乙肝腎[N];家庭醫(yī)生報;2006年
7 本版編輯邋本報記者 劉遠(yuǎn)芬 艾蘇;ALD發(fā)病率悄然上升[N];醫(yī)藥經(jīng)濟報;2008年
8 遼寧省錦州市傳染病院 主任醫(yī)師 王振坤;乙肝病毒(HBV)的特性[N];家庭醫(yī)生報;2004年
9 趙鴻;消炎保肝因人而異[N];大眾衛(wèi)生報;2007年
10 林 文;人體免疫力越高越好嗎?[N];中國質(zhì)量報;2004年
相關(guān)博士學(xué)位論文 前10條
1 李靜;基于NKG2D在安多霖保護微波輻射致免疫損傷中的作用機制研究[D];中國人民解放軍軍事醫(yī)學(xué)科學(xué)院;2012年
2 高桂新;感冒雙解合劑抗流感病毒感染小鼠免疫損傷的機制研究[D];北京中醫(yī)藥大學(xué);2004年
3 袁夢華;吡格列酮對STZ誘導(dǎo)的糖尿病大鼠心血管和骨骼肌免疫損傷的保護作用[D];天津醫(yī)科大學(xué);2010年
4 姜萍;調(diào)心飲對冠心病免疫損傷的干預(yù)研究[D];山東中醫(yī)藥大學(xué);2004年
5 劉葉;清熱化濕透表法干預(yù)小鼠流感病毒性濕熱證免疫損傷的機理研究[D];廣州中醫(yī)藥大學(xué);2008年
6 張耀;CD8~+T細(xì)胞K~+、Ca~(2+)離子通道與乙型重型肝炎免疫調(diào)控機制的相關(guān)性研究[D];第三軍醫(yī)大學(xué);2008年
7 秦薇;不同限制性輸液方案復(fù)蘇孕兔非控制性失血性休克的研究[D];南方醫(yī)科大學(xué);2008年
8 胥韋;H5N1禽流感病毒HA蛋白的免疫損傷致病機制研究[D];廣州醫(yī)學(xué)院;2009年
9 李銳;小膠質(zhì)細(xì)胞介導(dǎo)多巴胺能神經(jīng)元損傷的機制及干預(yù)研究[D];第四軍醫(yī)大學(xué);2004年
10 蔣麗敏;黃芪對柯薩奇B_(3m)病毒感染所致小鼠心肌炎心肌穿孔素mRNA表達(dá)和免疫損傷的影響[D];中國醫(yī)科大學(xué);2003年
相關(guān)碩士學(xué)位論文 前10條
1 李威娜;小鼠骨髓間充質(zhì)干細(xì)胞對免疫損傷卵巢的修復(fù)[D];暨南大學(xué);2011年
2 周林;考慮非溶解治愈和免疫損傷的乙肝病毒模型分析[D];西南大學(xué);2012年
3 游曙銘;青秦液對高尿酸血癥模型大鼠關(guān)節(jié)免疫性病理損傷的修復(fù)作用研究[D];北京中醫(yī)藥大學(xué);2009年
4 黃艷秋;應(yīng)激損傷相關(guān)信號鏈與精神疾病中的免疫損傷機制研究[D];北京協(xié)和醫(yī)學(xué)院;2012年
5 葛南海;抑制JAK3激酶的活化對H5N1病毒HA蛋白介導(dǎo)的小鼠外周免疫器官損傷的保護作用[D];廣州醫(yī)學(xué)院;2009年
6 邵國軍;大氣顆粒物PM_(2.5)對大鼠呼吸系統(tǒng)免疫損傷機制研究[D];蘭州大學(xué);2006年
7 田云梅;高原低氧免疫損傷及其干預(yù)措施的研究[D];中國人民解放軍軍事醫(yī)學(xué)科學(xué)院;2009年
8 朱曼迪;獨活對阿爾茨海默病模型大鼠免疫損傷干預(yù)作用的實驗研究[D];遼寧中醫(yī)藥大學(xué);2009年
9 陳東東;重癥急性胰腺炎免疫損傷不同分期的特點與免疫調(diào)節(jié)劑應(yīng)用效果研究[D];蘭州大學(xué);2011年
10 邊U
本文編號:2219032
本文鏈接:http://sikaile.net/xiyixuelunwen/2219032.html