CD43表達與造血干細胞發(fā)育的相關性研究
[Abstract]:In the development of embryo, the first hematopoietic stem cell (hematopoietic stem cells, HSC) is produced in the aorta sex gland and the middle kidney region (aorta-gonads-mesonephros region, AGM region) in the embryo, and later appears in the placenta and the yolk sac and then migrates to the fetal liver. The hematopoietic microenvironment is the production of HSC, mature, amplified and differentiated to provide appropriate regulatory signals. Because the culture conditions in vitro are not sufficient to simulate the complex microenvironment in the body, HSC is easy to lose the "dry" in vitro. The method of tissue culture (tissue culture) can retain the three-dimensional inner part of the tissue, which is closer to the physiological state, and in vitro It can significantly promote the maturation and proliferation of HSC. In mice, HSC occurs at different time and loci. In early development (10.5-11.5 days of embryo stage), the number of HSC is very few (about 1-3 / embryos), and there is no specific surface marker. This makes it difficult to explore the development and regulation mechanism of HSC. Therefore, to separate and purify HSC and clarify HSC It is particularly important to find out and identify new hematopoietic and / or HSC specific markers.
In the first part of this study, we explored the regulation of hematopoiesis in the AGM region of mouse embryos by establishing a special tissue culture method. The AGM area of E10.5-E11 embryos of mice was selected as the experimental object, and the tissue culture system of the boundary of gas and liquid was established. After 2 days of incubation, the following three types of analysis were made: using colony formation experiment to observe the medullary lineage in vitro The number of colony-forming unit of spleen (CFU-S) was used to detect the changes of myeloid progenitor cells in the body. The development of HSC was investigated by transplantation (long term reconstruction). The results showed that after tissue culture, the cells of each E10.5 AGM area could form 104 + 18 medullary colony, and the cells in each E10.5 AGM region were lethal. In the spleen of adult mice irradiated with dose, 10.8 + 3.5 CFU-S. are more important, and the hematopoietic system of adult mice with high proportion (85.7%), high chimerism (51.12% + 21.17%) and long-term (4 months) reconstruction of lethal dose in the tissue culture of the adult mice can be detected in the peripheral blood, bone marrow, spleen and thymus of the recipient. The above data are similar to those of classical literature. It is proved that tissue culture in vitro can promote the maturation and amplification of HSC in AGM region of mice, and is an effective method to study the rules of embryo hematopoiesis.
In the second part of this study, with the aid of the established tissue culture and transplantation system, we focus on the HSC expression of CD43 at different developmental time and loci.CD43, also known as leukosialin or sialophorin, and CD34, Endomucin and other molecules are members of the endothelial salivary mucin family, with a complete cell membrane surface mucin. The main points of our research are based on the following points: Previous studies have shown that CD43 is highly expressed in human and mouse bone marrow HSC; human embryonic stem cells and hematopoietic progenitors that induce pluripotent stem cells express CD43; they are expressed in the ventral hemopoietic cluster of the human embryonic dorsal aorta (a special cell group enriched with hematopoietic progenitor cells). In addition, CD43 and mouse embryos are also expressed. The important HSC surface marker CD34 is similar in structure. The similarities and differences between the two markers are also interesting issues.
To clarify the expression of CD43 in the AGM region HSC, we digested E10.5, E11.5 and E12.5 AGM into single cell suspension, and obtained CD43+ cells and CD43- cells by immunomagnetic beads, and transplanted into the adult receptor mice irradiated by 60Co lethal dose (9 Gy) according to 1-2 embryos, respectively. After 4 months of transplantation, the peripheral blood was detected and calculated (GFP+CD45+) The ratio of D45+ was found to be chimerism, and more than 10% was regarded as reconstruction. The results showed that the reconstruction ratio of CD43+ cells in E10.5, E11.5, E12.5 AGM region was 2/15,6/12,4/4., and all CD43- cell transplantation recipients were not found to reconstruct (n=26). The peripheral blood of the receptor, bone marrow, spleen, and chest gland contained a considerable proportion of myeloid, B lymphocytes, T lymphocyte, indicating that CD43+ cells in AGM region have multiple differentiation potential. At the same time, two transplanting experiments confirmed that CD43+ cells in AGM region have self-renewal ability. Previous studies showed that HSC in AGM region existed in c-Kit+CD34+ cells. Further flow analysis showed that the proportion of CD43 in this group of E11.5AGM was 16.2%-22.3%. These data indicate that HSC in AGM region of mouse embryos is distributed in CD43+ subsets.
Previous studies have found that the immunophenotype of the E11.5 AGM region changes after the culture in vitro, and the immunophenotype of HSC changes from CD34+ to CD34- and is the same as that of adult bone marrow HSC. In order to clarify whether there is a similar characteristic of CD43, we carry out AGM region (E10.5-E11.5) for 2 days of tissue culture, and obtain CD43+ cells and CD43- cells from magnetic beads, and then transplant to lethal dose illumination. The results showed that the reconstruction ratio of CD43+ cells in E10.5, E11.5 AGM region was 4/4 and 6/6 respectively, while CD43- cells were not rebuilt (n=7). The peripheral blood, bone marrow, spleen, and thymus contained a considerable proportion of myeloid or lymphoid cells in the rebuilt receptor, indicating that the tissue culture of AGM region CD43+ cells still had multiple lines. The above data indicate that tissue culture can promote the amplification of CD43+HSC in AGM region. Unlike CD34, CD43 is continuously expressed during HSC maturation and proliferation in vitro.
In recent years, many studies have shown that the placenta is another important site for the development of HSC, similar to the AGM region and the yolk sac. In order to further clarify the expression of CD43 in the HSC from the source of the placenta and the yolk sac, we transplanted the CD43+ and CD43- cells of the E11.5 placenta and the yolk sac into the receptor mice irradiated at the dead dose, and found the placental CD43. The reconstructive ratio of + cells was 7/7, the yolk sac was 5/8, and the CD43- cells were rebuilt (n=13). In addition, the CD43+ cells of the E11.5 placenta and the yolk sac also had multiple differentiation potential. Previous studies showed that the HSC in the placenta and the yolk sac was found in c-Kit+CD34+ cells. Our flow cytometry found the group of double positive cells in the E11.5 placenta and the yolk sac. 21.2%-33.7% and 14.9%-24.0% expressed CD43, respectively, suggesting that CD43 could be further enriched by CD43 in the above tissue, indicating that HSC in the placenta and yolk sac expressed CD43.
In the embryonic period of hematopoiesis, the AGM region, the placenta, and the yolk sac derived from the HSC can be settled in the fetal liver through the blood circulation, and the latter becomes the most important HSC amplification site. In order to determine whether the HSC in the fetal liver is CD43, we transplant CD43+ cells and CD43- cells from the E12.5 fetal liver to the lethal dose irradiated recipient mice. The result is that only the fetal liver CD43+ is fine. The cell can reconstruct the adult hematopoiesis (reconstructive ratio of 5/5) and have the potential of hematopoietic pluripotent differentiation. Previous studies showed that CD45 began to express on HSC after E11.5. To further determine the expression of CD43 in the HSC of fetal liver at different developmental stages, we use CD43 and CD45 antibodies to mark the fetal liver cells of E13.5 and E16.5 and obtain CD45+CD43hig by flow sorting. H, CD45+CD43mid and CD45+CD43- three cells. After transplantation, it was found that only CD45+CD43high cells could reconstruct adult hematopoiesis (the proportion of E13.5 and E16.5 reconstruction was 3/3 and 6/7). This phenomenon was similar to that of adult marrow HSC concentrated in the CD43high subgroup. In the case of CD43, the positive ratio of 95%.
Summary: CD43 was previously thought to be a hematopoiesis marker similar to CD45, and this study associated its expression closely with early hematopoiesis. As a specific marker for a new period of embryonic hematopoiesis, the uniqueness of CD43 is expressed continuously in all important stages of the development of HSC (emergence, maturation, amplification), and every hematopoiesis Tissue (AGM region, placenta, yolk sac, fetal liver). Therefore, the marker function of CD43 provides a sensitive marker for the future study of embryo hematopoiesis in gene knockout mice, and its physiological function should be further studied.
【學位授予單位】:中國人民解放軍軍事醫(yī)學科學院
【學位級別】:碩士
【學位授予年份】:2011
【分類號】:R329
【相似文獻】
相關期刊論文 前10條
1 從玉華;;從皮膚中提取干細胞[J];中學生優(yōu)秀作文(中考?);2009年10期
2 ;國際舞臺上中國干細胞研究專家2010年4~5月的成果[J];中國組織工程研究與臨床康復;2011年27期
3 朋客;;拋棄男人孕育生命?[J];生命世界;2006年10期
4 徐紅新;田毅浩;曲折;黃文蔚;蔣學俊;李庚山;;激活Notch對胚胎干細胞向心肌細胞分化的影響[J];武漢大學學報(醫(yī)學版);2011年05期
5 郭禮和;;人羊膜上皮細胞具有胚胎干細胞和移植免疫耐受等優(yōu)良特性[J];中國細胞生物學學報;2011年04期
6 ;國際舞臺上中國干細胞研究專家2010年1~2月的學術成果[J];中國組織工程研究與臨床康復;2011年23期
7 張樹庸;;科學家確定DNA的第7種和第8種堿基[J];實驗動物科學;2011年04期
8 ;“人造精子”獲重大突破[J];戀愛婚姻家庭(養(yǎng)生);2011年10期
9 ;國際舞臺上中國干細胞研究專家2010年6~7月的成果[J];中國組織工程研究與臨床康復;2011年32期
10 曾現(xiàn)偉;呂翠;胡振波;潘順;季泰令;楊斌;;體外誘導兔胚胎干細胞分化為神經細胞[J];中國衛(wèi)生檢驗雜志;2011年06期
相關會議論文 前10條
1 蔣暉;瞿東濱;金大地;鞠躬;;新型神經營養(yǎng)因子TAT-BDNF促進胚胎干細胞的神經元性分化[A];第一屆全國脊髓損傷治療與康復研討會暨中國康復醫(yī)學會脊柱脊髓損傷專業(yè)委員會脊髓損傷與康復學組成立會論文匯編[C];2009年
2 秦茂林;蔡文琴;張吉強;李成仁;李巍;;雌二醇對胚胎干細胞神經定向分化誘導的影響[A];中國解剖學會第十一屆全國組織學與胚胎學青年學術研討會論文匯編[C];2009年
3 徐小明;竇忠英;華進聯(lián);葛秀國;;免疫外科法分離克隆BALB/c小鼠胚胎干細胞[A];全國首屆動物生物技術學術研討會論文集[C];2004年
4 于洲;徐海濱;;應用胚胎干細胞實驗模型體系對異硫氰酸鹽發(fā)育毒性的研究[A];2010年全國藥物毒理學學術會議論文集[C];2010年
5 劉平;關云謙;鄒春林;張愚;陳彪;劉焯霖;;胚胎干細胞在體內外誘導分化成為多巴胺能神經的初步研究[A];中華醫(yī)學會第七次全國神經病學學術會議論文匯編[C];2004年
6 隋婧;姜方旭;施秉銀;;胚胎干細胞定向分化為胰島祖細胞的基因表達譜分析[A];中華醫(yī)學會第十次全國內分泌學學術會議論文匯編[C];2011年
7 胡敏華;區(qū)穎蕾;李莉;郭欣政;張守全;;胚胎干細胞飼養(yǎng)層的優(yōu)化及影響內細胞團貼壁率的探討[A];中國畜牧獸醫(yī)學會動物繁殖學分會第十五屆學術研討會論文集(上冊)[C];2010年
8 馬育芳;楊陽;李燕;王少華;趙蕊;李寧;;豬胚胎干細胞多能性因子Nanog對胚胎發(fā)育的影響[A];中國畜牧獸醫(yī)學會動物繁殖學分會第十五屆學術研討會論文集(上冊)[C];2010年
9 周名亮;李謐;馬俊榮;余希杰;;Nf1基因缺失的胚胎干細胞模擬NF1成骨細胞的異常發(fā)育及分化[A];中華醫(yī)學會第三次骨質疏松和骨礦鹽疾病中青年學術會議論文匯編[C];2011年
10 曹楠;楊黃恬;;大鼠胚胎干細胞向心肌細胞體外分化的研究[A];中國病理生理學會第九屆全國代表大會及學術會議論文摘要[C];2010年
相關重要報紙文章 前10條
1 張樹庸 趙貴英;干細胞研究的突破[N];人民日報;2009年
2 記者 鄭曉春;胚胎干細胞療法安全性研究亟待加強[N];科技日報;2009年
3 記者 余靖靜;我科學家實現(xiàn)“用胚胎干細胞再生肌腱”[N];新華每日電訊;2009年
4 本報記者 李雪林;如何讓中國小實驗室厚積薄發(fā)[N];文匯報;2009年
5 記者孫國根;首個大鼠胚胎干細胞成功提取[N];健康報;2009年
6 孫國根;復旦大學成功提取首個大鼠胚胎干細胞[N];中國醫(yī)藥報;2009年
7 本報首席記者 任荃;第二顆“全能種子”會不會搶先“發(fā)芽”[N];文匯報;2009年
8 記者 鄭曉春;懸浮液可用于大規(guī)模培育胚胎干細胞[N];科技日報;2010年
9 記者 錢錚;牛膠原蛋白可助降低胚胎干細胞癌變幾率[N];新華每日電訊;2009年
10 記者 任海軍;奧兌現(xiàn)承諾,但“松綁”效應不會立竿見影[N];新華每日電訊;2009年
相關博士學位論文 前10條
1 譚舟;MK和GM-CSFRα在胚胎干細胞中的表達與功能研究[D];浙江大學;2010年
2 蘇中淵;胚胎干細胞來源的間充質干細胞歸巢及胚胎干細胞表面分子的研究[D];浙江大學;2010年
3 廖宏慶;人類不同原核數(shù)目受精卵中篩選正常優(yōu)質胚胎的策略研究[D];中南大學;2010年
4 白春玲;牛孤雌多倍體胚胎與克隆多倍體胚胎的研究[D];內蒙古大學;2011年
5 曲文玉;人胚胎干細胞的分離、培養(yǎng)及建系[D];中國醫(yī)科大學;2006年
6 李相運;小鼠胚胎干細胞多能性研究[D];西北農林科技大學;2001年
7 姚嘉宜;胚胎干細胞重新編程腫瘤細胞的研究[D];第二軍醫(yī)大學;2008年
8 趙惠萍;骨髓內皮細胞條件培養(yǎng)液誘導胚胎干細胞向造血細胞分化[D];中南大學;2003年
9 劉星霞;胚胎干細胞ES-D_3誘導分化為胰島素分泌細胞及其對糖尿病鼠降糖作用的研究[D];山東大學;2005年
10 諶兵來;小鼠胚胎干細胞建系新方法及TFAG促進鼠胚胎干細胞向神經細胞分化的初步研究[D];中南大學;2003年
相關碩士學位論文 前10條
1 孫國杰;山羊類胚胎干細胞的分離、克隆[D];河北農業(yè)大學;2002年
2 呂一帆;胚胎干細胞在內膜損傷小鼠宮腔內移植的實驗研究[D];福建醫(yī)科大學;2010年
3 周文平;小鼠三種胚胎干細胞表觀相關基因的分析[D];河南大學;2011年
4 姜靜宜;胚胎干細胞中外源性IbeB靶蛋白的篩選及驗證[D];中國醫(yī)科大學;2010年
5 蔡斌;體外誘導胚胎干細胞為神經細胞模型的建立及相關因子的實驗研究[D];第二軍醫(yī)大學;2001年
6 顧文佳;誘導胚胎干細胞向神經細胞分化的研究[D];中國醫(yī)科大學;2004年
7 徐小明;影響小鼠胚胎干細胞和牛胚胎生殖細胞分離克隆的因素[D];西北農林科技大學;2003年
8 劉愿;小鼠球形精子受精胚胎制備及培養(yǎng)方法的改進[D];山東師范大學;2011年
9 秦茂林;小鼠胚胎干細胞的分離、鑒定和神經定向誘導分化[D];第三軍醫(yī)大學;2001年
10 呂志一;小鼠2細胞胚胎基因表達譜研究[D];西北農林科技大學;2010年
,本文編號:2126836
本文鏈接:http://sikaile.net/xiyixuelunwen/2126836.html