天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

大腦顳上溝計(jì)算斷層影像解剖學(xué)及三維可視化研究

發(fā)布時(shí)間:2018-06-01 07:43

  本文選題:端腦 + 顳上溝。 參考:《蚌埠醫(yī)學(xué)院》2011年碩士論文


【摘要】:研究背景:隨著顯微神經(jīng)外科技術(shù)的提高和神經(jīng)影像技術(shù)的發(fā)展,當(dāng)代神經(jīng)外科已經(jīng)改變了經(jīng)典神經(jīng)外科的傳統(tǒng)開(kāi)顱方式,向以病灶為中心的個(gè)體化、微創(chuàng)性手術(shù)入路發(fā)展,而微創(chuàng)手術(shù)的基礎(chǔ)是術(shù)前對(duì)病變的精確定位。自20世紀(jì)80年代以來(lái),磁共振成像技術(shù)的發(fā)展使得無(wú)創(chuàng)的活體腦結(jié)構(gòu)研究成為可能。為適應(yīng)基于立體定向技術(shù)的功能神經(jīng)外科、微創(chuàng)神經(jīng)外科以及神經(jīng)放射外科等的快速發(fā)展,計(jì)算機(jī)輔助的影像引導(dǎo)下立體定向和介入放射技術(shù)為大腦皮層病變的微侵襲治療提供了現(xiàn)實(shí)途徑。對(duì)大腦重要腦溝進(jìn)行三維定位及可視化研究,將為腦內(nèi)微小病灶的精確定位、手術(shù)方案的擬定、微創(chuàng)技術(shù)的實(shí)施提供形態(tài)學(xué)依據(jù)。 顳上溝(Superior temporal sulcus,STS)是大腦外側(cè)面相當(dāng)恒定的腦溝之一,位于大腦外側(cè)面,為顳上回與顳下回的界限,前起顳極,后至角回,由前下向后上走行,與外側(cè)溝水平部幾乎平行。顳上溝周圍存在重要的皮質(zhì)功能區(qū),顳上溝在外側(cè)面有大腦中動(dòng)脈的重要分支圍繞。顳上溝內(nèi)側(cè)有很多重要結(jié)構(gòu),例如側(cè)腦室顳角、海馬結(jié)構(gòu)等等。上述區(qū)域是腦感染、腫瘤、血管性病變的好發(fā)部位。因此,顳上溝在斷面上的準(zhǔn)確識(shí)別及其在三度空間中的精確定位是顳上溝周圍區(qū)域病變的影像定位診斷、立體定向及微創(chuàng)神經(jīng)外科手術(shù)等的解剖學(xué)基礎(chǔ)。 腦溝是腦分區(qū)的天然標(biāo)志,通過(guò)識(shí)別腦溝定位不同的功能區(qū)或腦回,可以達(dá)到精確定位的目的,滿足腦功能分區(qū)研究和腦外科發(fā)展的需求。然而關(guān)于顳上溝精確的三維空間定位、顳上溝的非對(duì)稱性、顳上溝在大腦中的三維可視化模型構(gòu)建的研究尚未見(jiàn)報(bào)道。鑒于此,本研究選取29例無(wú)神經(jīng)、精神病史國(guó)人的MRI圖像,對(duì)其顳上溝的形態(tài)位置及側(cè)別差異進(jìn)行統(tǒng)計(jì)分析;在基于連合間徑的笛卡爾三維坐標(biāo)系中測(cè)量顳上溝的立體定位數(shù)據(jù)集,求得其在此坐標(biāo)系中的平面回歸方程;構(gòu)建基于斷層影像的顳上溝在整腦中的三維可視化模型,為研究顳上溝區(qū)域的的臨床影像學(xué)、立體定向外科、介入放射及微創(chuàng)外科等提供量化解剖學(xué)資料。 第一部分:基于連合間徑定位體系的大腦顳上溝斷層影像解剖學(xué) 目的:通過(guò)研究以AC-PC線為掃描基線的活體MR圖像,探討大腦顳上溝在橫斷面及矢狀面上的形態(tài)特征 方法:29例健康常人志愿者顱腦,以大腦連合間徑為掃描基線(AC-PC線),行橫斷層3mm薄層及矢狀面7mmMR掃描。在微型計(jì)算機(jī)上將掃描數(shù)據(jù)以Dicom3.0格式導(dǎo)入eFilm2.1工作站,利用“3D-Cursor”技術(shù)以易識(shí)別的矢狀面為對(duì)照,觀察顳上溝在連續(xù)橫斷層面上的形態(tài)及位置;對(duì)顳上溝在斷面上進(jìn)行分段;對(duì)顳上溝在橫斷面上表現(xiàn)為多溝的層面進(jìn)行統(tǒng)計(jì)分析。 結(jié)果:能夠在薄層MR圖像連續(xù)層面上準(zhǔn)確識(shí)別顳上溝,并得出顳上溝的形態(tài)及位置規(guī)律: 1.顳上溝在斷面上的分段在矢狀面上可以分為水平段及升段,二者之間出現(xiàn)明顯的拐點(diǎn),在橫斷面上的顳上溝各段位置為(1)水平段范圍均值:左側(cè)Z=-27.10~2.28mm右側(cè)Z=-26.48~2.07mm;(2)升段范圍均值:左側(cè)Z=2.28~36.41mm右側(cè)Z=2.07~36.41mm 2.顳上溝拐點(diǎn)及多溝表現(xiàn)的統(tǒng)計(jì) (1)顳上溝拐點(diǎn)三維坐標(biāo)值:左側(cè):X±S=51.78±6.6221mm,Y±S=-34.90±8.1627mm,Z±S=2.06±3.1309mm右側(cè):X±S=-53.20±7.3935mm,Y±S=-28.34±8.8218mm,Z±S=2.24±3.1346mm (2)顳上溝在橫斷面上多溝表現(xiàn)兩側(cè)無(wú)明顯差異性 3.笛卡爾坐標(biāo)系中顳上溝水平段在Y軸上的最前與最后點(diǎn)的位置范圍及前后跨度左側(cè):最前點(diǎn)Y的平均坐標(biāo)值為32.2310±3.5072mm,最后點(diǎn)Y的平均坐標(biāo)值為-38.3207±9.2233mm,在Y軸前后跨度的平均值為70.5517±10.2311mm.右側(cè):最前點(diǎn)Y的平均坐標(biāo)值為34.0448±3.6126mm,最后點(diǎn)Y的平均坐標(biāo)值為-32.1345±9.1437mm,在Y軸前后跨度的平均值為66.1793±10.0585mm.三組數(shù)據(jù)經(jīng)兩樣本t檢驗(yàn)P值均大于0.01 結(jié)論:利用“3D-Cursor”技術(shù)以易識(shí)別的矢狀面為對(duì)照,可以在橫斷面薄層MR圖像連續(xù)層面上準(zhǔn)確識(shí)別顳上溝,為顳上溝區(qū)域病灶的定位和外科手術(shù)入路方案的制定提供了解剖學(xué)依據(jù)。顳上溝的分段及多溝層面的分析為經(jīng)顳上溝手術(shù)入路和腦的發(fā)生發(fā)育學(xué)提供參考。 第二部分:大腦顳上溝升段以及顳上溝外側(cè)緣立體定位數(shù)據(jù)集的構(gòu)建及回歸分析 1.顳上溝升段立體定位數(shù)據(jù)集的構(gòu)建 目的:求得顳上溝升段在笛卡爾三維坐標(biāo)系中的立體定位數(shù)據(jù)集。 方法:上述29例健康成人顱腦橫斷層MRI數(shù)據(jù)經(jīng)格式轉(zhuǎn)化導(dǎo)入Photoshop軟件,經(jīng)圖象旋轉(zhuǎn)、坐標(biāo)原點(diǎn)平移,使得設(shè)定的大腦空間坐標(biāo)系X、Y軸在該層面上的投影線分別與軟件操作界面的坐標(biāo)軸x、y完全重合;以顳上溝升段在外表面的點(diǎn)為起始點(diǎn),沿顳上溝向內(nèi)x值每隔3mm取點(diǎn),讀取、記錄各取樣點(diǎn)的x、y坐標(biāo)值,z值為所在層面距離零層面的數(shù)目與層距的乘積。所有取樣點(diǎn)坐標(biāo)組成顳上溝升段在三維坐標(biāo)系中的立體定位數(shù)據(jù)集。 結(jié)果:構(gòu)建顳上溝升段在三維坐標(biāo)系中的立體定位數(shù)據(jù)集 結(jié)論:顳上溝升段與笛卡爾三維坐標(biāo)系有相對(duì)穩(wěn)定的位置相關(guān)性。本研究構(gòu)建的“顳上溝升段立體定位數(shù)據(jù)集”預(yù)期對(duì)于立體定向神經(jīng)外科、介入放射治療及微創(chuàng)神經(jīng)外科等有較大的臨床應(yīng)用價(jià)值;同時(shí),可以為神經(jīng)生理功能、人類學(xué)等方面的研究提供形態(tài)學(xué)基礎(chǔ)。 2.顳上溝外表面的投影圖及擬合曲線方程分析 目的:計(jì)算顳上溝的外表面在冠狀面和矢狀面上投影圖及其擬合曲線方程。 方法:以大腦聯(lián)合間徑中點(diǎn)為原點(diǎn),前后聯(lián)合間徑與Y軸重疊建立笛卡兒三維坐標(biāo)系;29例健康成人(無(wú)神經(jīng)系統(tǒng)疾病、精神病史及其家族史),以AC-PC為掃描基線,掃描層厚2.5mm,層距0.5mm,采集顱腦橫斷層MRI的T1W的Dicom3.0格式數(shù)據(jù)。數(shù)據(jù)經(jīng)格式轉(zhuǎn)化導(dǎo)入Photoshop軟件,讀取、記錄每一層面上顳上溝最外側(cè)點(diǎn)的三維坐標(biāo)值,z值的求得同前;利用spss16.0統(tǒng)計(jì)軟件求解其在各投影方向上的擬合曲線方程。 結(jié)果:顳上溝外側(cè)緣在冠狀面及矢狀面上的投影圖能夠反映顳上溝的特征,求出了顳上溝外側(cè)緣在各投影平面上的直線和曲線回歸方程: (1)在橫斷面上的擬合曲線方程左側(cè):X=-0.0006Y3-0.011Y2~-0.162~Y+64.812(R=0.821,R~2=0.673,S=4.253,P0.01)右側(cè):X=0.0004Y~3+0.010Y~2+0.195Y-64.004(R=0.846,R~2=0.715,S=3.799,P0.01) (2)在冠狀面上的擬合曲線方程左側(cè):X=0.0004Z~3-0.017Z2-0.010Z+61.158(R=0.709,R~2=0.503,S=5.249,P0.01)右側(cè):X=0.0003Z~3+0.016Z~2-0.138Z-61.966(R=0.714,R~2=0.510,S=4.980,P0.01) (3)在矢狀面上的擬合曲線方程左側(cè):Y=0.001Z~3+0.002Z~2-2.310Z-12.430(R=0.907,R~2=0.823,S=13.463,P0.01)右側(cè):Y=0.001Z~3+0.008Z~2-1.959Z-11.502(R=0.894,R~2=0.799,S=13.108,P0.01) 結(jié)論:顳上溝外側(cè)緣回歸方程的相關(guān)系數(shù)均較高,反映了其較高的擬合度,表明顳上溝的走行具有較大的穩(wěn)定性。這在腦的發(fā)育學(xué)、人類學(xué)、體質(zhì)測(cè)量學(xué)等方面具有一定的科學(xué)價(jià)值 第三部分:大腦顳上溝的三維重建及可視化 目的:重建顳上溝的三維可視化模型,,為微創(chuàng)手術(shù)、介入放射、精神外科及解剖學(xué)教學(xué)提供可視化模型。 方法:在微型計(jì)算機(jī)上,1例正常成人(無(wú)神經(jīng)系統(tǒng)疾病、精神病史及其家族史)顱腦冠狀位2mm薄層MRI掃描數(shù)據(jù)以Dicom3.0格式直接導(dǎo)入3D-doctor軟件,人工分割側(cè)腦室、顳上溝、大腦縱裂及大腦表面,分別以不同顏色標(biāo)識(shí),以復(fù)雜面重建方法對(duì)上述四者同時(shí)進(jìn)行三維重建。 結(jié)果:成功重建了顳上溝在整腦中的三維可視化模型,展現(xiàn)了顳上溝在活體腦中的形態(tài)、位置及毗鄰關(guān)系。模型可任意方位旋轉(zhuǎn),便于從各個(gè)方向觀察。 結(jié)論:應(yīng)用MRI數(shù)據(jù)建立顳上溝的三維模型,可以從不同角度觀察顳上溝三維形態(tài)、空間位置及其與周圍重要結(jié)構(gòu)的毗鄰關(guān)系,并可以在模型上進(jìn)行三維解剖學(xué)的側(cè)量,這在解剖學(xué)教學(xué)、立體定向精神外科、介入放射等方面有應(yīng)用價(jià)值。
[Abstract]:Background: with the improvement of microsurgery in the microdepartment of neurosurgery and the development of neuroimaging techniques, the contemporary Department of neurosurgery has changed the classical craniotomy, the individualization of the focus and the development of minimally invasive surgery, and the basis of the minimally invasive surgery is the precise location of the lesions before the operation. Since 1980s. Since the development of magnetic resonance imaging technology has made it possible to study the noninvasive living brain structure, to adapt to the rapid development of the functional department of Neurosurgery based on stereotactic technology, minimally invasive Department of neurosurgery and Neurosurgery, computer assisted stereotactic and interventional radiology for the microinvasion of cerebral cortex lesions The three dimensional localization and visualization of the important cerebral sulcus of the brain will provide the precise location of the small brain lesions, the formulation of the operation scheme, and the morphological basis for the implementation of the minimally invasive technique.
The superior temporal sulcus (Superior temporal sulcus, STS) is one of the fairly constant cerebral sulcus, located outside the brain, the boundary of the superior temporal gyrus and the inferior temporal gyrus, the anterior temporal pole, the posterior to the angular gyrus, from the anterior to the back, almost parallel to the lateral sulcus level. There are important cortical functional areas around the superior temporal sulcus and the superior temporal sulcus is large on the outer side. There are many important branches of the middle cerebral artery. There are many important structures in the medial temporal trench, such as the temporal horn of the lateral ventricle, the structure of the hippocampus, and so on. The above area is a good location for the brain infection, tumor, and vascular disease. Therefore, the accurate identification of the superior temporal sulcus and its precise location in the three degree space are the images of the lesions around the superior temporal sulcus. The anatomical basis of position diagnosis, stereotactic surgery and minimally invasive Department of neurosurgery operation.
The brain gully is a natural sign of the brain region. By identifying different functional areas or gyrus, the brain can be located in the brain in order to achieve the goal of precise localization and to meet the needs of the study of brain function zoning and the development of the Department of cerebral surgery. However, the accurate three-dimensional spatial location of the superior temporal groove, the asymmetry of the superior temporal sulcus, the three-dimensional visualization model of the superior temporal sulcus in the brain The study has not been reported. In view of this, the MRI images of 29 people with a history of neurologic and psychotic history were selected to analyze the morphological position and side difference of the superior temporal sulcus. The plane regression of the upper temporal trench was measured in the Descartes three-dimensional coordinate system based on the junction diameter, and the plane regression in the coordinate system was obtained. The three-dimensional visualization model of the superior temporal sulcus in the whole brain was constructed based on the tomography of the temporal trench, which provided quantitative anatomical data for the clinical imaging, stereotactic surgery, interventional radiology and minimally invasive surgery for the study of the superior temporal trenches.
Part I: sectional anatomy of the superior temporal sulcus based on the commissural diameter positioning system.
Objective: To study the morphological characteristics of the superior temporal sulcus on the transverse and sagittal planes by studying the living MR images with AC-PC line as the scanning baseline.
Methods: the brain of 29 healthy and normal volunteers was scanned with 3mm thin layer and sagittal plane of transverse fault as the scan baseline (AC-PC line). The scanned data were introduced into the eFilm2.1 workstation with Dicom3.0 format on the microcomputer. Using the "3D-Cursor" technique, the easily recognizable sagittal plane was used as the control, and the superior temporal sulcus was observed continuously in the transverse direction. The morphology and location of the fault surface; segmental temporal sulcus was segmented; and the multiple sulcus of the superior temporal sulcus on the cross section was statistically analyzed.
Results: the superior temporal sulcus could be identified accurately on the thin layer of MR images and the morphology and location of the superior temporal sulcus were obtained.
1. the segment of the superior temporal trenches can be divided into horizontal and ascending segments on the sagittal plane, and there is an obvious turning point between the two. The average level of each segment of the superior temporal sulcus on the cross section is (1) of the horizontal segment range: the left Z=-27.10~2.28mm right Z=-26.48~2.07mm; (2) the mean of the left Z=2.28~36.41mm right Z=2.07~36.41mm
2. statistics of the inflection point of the superior temporal sulcus and the expression of multiple trenches
(1) the three-dimensional coordinate value of the inflection point of the superior temporal sulcus: X + S=51.78 + 6.6221mm, Y + S=-34.90 + 8.1627mm, Z + S=2.06 + 3.1309mm right: X +. S=-53.20 + 7.3935mm.
(2) there were no significant differences between the two sides of the superior temporal sulcus on the cross section.
3. the position range of the top and final points on the Y axis in the Cartesian coordinate system and the left and back points on the left side: the average coordinate value of the most forward point Y is 32.2310 + 3.5072mm, the average coordinate value of the final point Y is -38.3207 + 9.2233mm, the average value of the span in the Y axis is 70.5517 + 10.2311mm. right: the average coordinates of the maximum point Y. The value of the value is 34.0448 + 3.6126mm, the average coordinate value of the final point Y is -32.1345 + 9.1437mm, the average value of the span of the Y axis is 66.1793 + 10.0585mm. three groups, and the P value is greater than 0.01 through the two sample t test.
Conclusion: using the "3D-Cursor" technique with the easily recognizable sagittal plane as the control, the superior temporal groove can be accurately identified on the horizontal slice of the transect thin layer MR image. It provides an anatomical basis for the localization of the lesions in the superior temporal sulcus and the formulation of the surgical approach. The development of the road and brain provides a reference.
The second part is the construction and regression analysis of the stereotactic data set on the ascending part of the superior temporal sulcus and the lateral border of the superior temporal sulcus.
The construction of 1. stereotactic data set of the ascending segment of the superior temporal sulcus
Objective: to obtain the stereotactic data set in ascending Cartesian ascending segment in Cartesian three-dimensional coordinate system.
Methods: the MRI data of the craniocerebral transverse faults in 29 healthy adults were transformed into Photoshop software by format conversion, and the images were rotated and the coordinates of the coordinates were moved to make the set of the spatial coordinate system of the brain X. The projection lines on the Y axis were in complete coincidence with the coordinate axis of the software operation interface, x, y, and the point in the outer surface of the upper temporal trench was the starting point. Point, the inward x value of the superior temporal trench is taken every 3mm, read and record the X, y coordinates of each sampling point, and the Z value is the product of the number of zero layers and the layer distance at the level of the location, and the coordinates of all the sampling points constitute the stereoscopic positioning data set in the three-dimensional coordinate system.
Results: the stereotactic data set of the ascending part of the superior temporal sulcus in the three-dimensional coordinate system was constructed.
Conclusion: the ascending segment of the temporal sulcus has a relatively stable position correlation with Descartes's three-dimensional coordinate system. The "stereotactic data set of the ascending segment of the temporal trenches" is expected to have a greater clinical value for stereotactic Department of Neurosurgery, interventional radiology and minimally invasive Department of Neurosurgery, and can be used for neurophysiological functions, human beings. Studies, such as studies, provide a morphological basis.
2. the projection and fitting curve equation of the external surface of the superior temporal sulcus
Objective: to calculate the projection of the external surface of the superior temporal sulcus on the coronal and sagittal planes and the fitting curve equation.
Methods: the Cartesian three-dimensional coordinate system was set up with the middle point of the joint diameter of the brain and the joint diameter and the Y axis. 29 healthy adults (no nervous system disease, the history of mental illness and family history) were scanned with AC-PC as the scanning baseline, the thickness of the scanning layer was 2.5mm, the layer distance 0.5mm, and the Dicom3.0 format data of the T1W of the craniocerebral transverse fault MRI. Photoshop software is introduced to read and record the three-dimensional coordinates of the most lateral point of the superior temporal trench at each level, and the Z values are obtained in the same front, and the fitting curve equation in each projection direction is solved by using the SPSS16.0 statistical software.
Results: the projection of the lateral temporal margin of the trench on the coronal and sagittal plane can reflect the characteristics of the superior temporal trench, and the regression equation of the straight line and curve on the projection planes of the superior temporal sulcus of the temporal trench is obtained.
(1) on the left side of the fitting curve equation on the cross section: x = - 0. 0. 0, 3 - 0. - 0. - 0. 16 2 - y + 6. 8 12 (R=0.821, R~2=0.673, S=4.253, P0.01) on the right side: x = 0. 000 4 y ~ 3 + 0. 0 - 2 + 0. 5 - 60 - 6. 000 4 (R=0.846, R~2=0.715, S=3.799, P0.01)
(2) on the left side of the fitted curvilinear equation on the coronal plane: x = 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1 + 6. 15. (R=0.709, R~2=0.503, S=5.249, P0.01) on the right side: x = 0. 0. 0. 3 + 3 + 0. 16 - 2 - 0. 13 - 0. 13 - 6. 6. 90 (P0.01).
(3) on the left side of the fitting curve equation on the sagittal plane: y = 0. 0. 0. 3 + 0 0. 0. 2 - 2 - 2. 2 - 2. 3 - 12. 40 (R=0.907, R~2=0.823, S=13.463, P0.01) on the right side: y = 0. 0. 0. 3 + 0. 0. 0. 0. 0. 2 - 1. 2 - 1. 5. 9 - 11 - 11. 50 (R=0.894, R~2=0.799, S=13.108, P0.01)
Conclusion: the correlation coefficient of the regression equation of the superior temporal sulcus is high, which reflects the higher fitting degree. It shows that the walking of the superior temporal sulcus has great stability. It has certain scientific value in the aspects of brain development, anthropology, physique and so on.
The third part: 3D reconstruction and visualization of the superior temporal sulcus of the brain.
Objective: to reconstruct the three-dimensional visualization model of the superior temporal sulcus, and to provide a visual model for minimally invasive surgery, interventional radiology, psycho surgery and anatomy teaching.
Methods: on the microcomputer, 1 normal adults (without nervous system disease, history of mental illness and family history) 2mm MRI scan data of the craniocerebral coronary position were directly introduced into the 3D-doctor software in Dicom3.0 format, and the lateral ventricle, the superior temporal groove, the cerebral longitudinal fissure and the brain surface were artificially divided, and the complex facial reconstruction method was used for the reconstruction of the complex surface. These four reconstructions are performed at the same time.
Results: the three-dimensional visualization model of the superior temporal sulcus in the whole brain was successfully reconstructed, which showed the shape, position and adjacent relationship of the superior temporal sulcus in the living brain. The model could rotate in any direction and was easy to observe in all directions.
Conclusion: using MRI data to establish a three-dimensional model of the superior temporal sulcus can be used to observe the three-dimensional morphology, spatial position and adjacent relationship with the important structures around the temporal sulcus from different angles, and can carry out the lateral volume of three-dimensional anatomy on the model, which is valuable in the teaching of anatomy, stereotactic neurosurgery, and interventional radiology.
【學(xué)位授予單位】:蚌埠醫(yī)學(xué)院
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2011
【分類號(hào)】:R322.81

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 沈龍山;王震寰;張磊;張順花;張艷;張俊祥;劉志軍;;計(jì)算機(jī)輔助連續(xù)結(jié)構(gòu)追蹤技術(shù)對(duì)大腦中央溝精確定位的方法學(xué)研究[J];蚌埠醫(yī)學(xué)院學(xué)報(bào);2008年06期

2 沈龍山;王震寰;張磊;張順花;張艷;張俊祥;劉志軍;;計(jì)算機(jī)輔助三維定標(biāo)法在冠、矢狀位MRI腦結(jié)構(gòu)定位的研究[J];蚌埠醫(yī)學(xué)院學(xué)報(bào);2008年06期

3 張紹祥,劉正津,譚立文,邱明國(guó),李七渝,李愷,崔高宇,郭燕麗,劉光久,單錦露,劉繼軍,張偉國(guó),陳金華,王健,陳偉,陸明,游箭,龐學(xué)利,肖紅,許忠信,王欲u&,鄧俊輝,唐澤圣;首例中國(guó)女性數(shù)字化可視人體數(shù)據(jù)集完成[J];第三軍醫(yī)大學(xué)學(xué)報(bào);2003年04期

4 蔡博文;周良學(xué);游潮;陳海峰;;經(jīng)顳上溝、頂間溝入路顯微手術(shù)治療側(cè)腦室腦膜瘤[J];華西醫(yī)學(xué);2007年03期

5 孫陽(yáng);趙剛;許海洋;姜宏;;基底節(jié)區(qū)高血壓性腦出血經(jīng)顳上溝入路顯微外科治療體會(huì)[J];吉林醫(yī)學(xué);2006年09期

6 崔志潭;陳仲欣;黃璇英;;國(guó)人大腦半球腦溝的形態(tài)[J];解剖學(xué)報(bào);1980年02期

7 耿道穎,沈天真,沈馨亞,沈宗文;正常腦標(biāo)本解剖標(biāo)志中斷層解剖與MRI對(duì)照研究[J];中國(guó)臨床神經(jīng)科學(xué);2000年01期

8 閆家閣,馬永臻,李化連;胎腦顳葉腦溝發(fā)育規(guī)律的研究[J];臨沂醫(yī)專學(xué)報(bào);1999年01期

9 周健,欒國(guó)明;顳葉癲癇的外科相關(guān)解剖[J];立體定向和功能性神經(jīng)外科雜志;2001年01期

10 譚啟富,孫克華,孫康健,潘云曦,華長(zhǎng)春;顳葉的局部解剖與癲癇的手術(shù)治療(顳葉切除術(shù)的一些改進(jìn))[J];立體定向和功能性神經(jīng)外科雜志;1998年03期



本文編號(hào):1963414

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/xiyixuelunwen/1963414.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶87d50***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
欧美午夜一级特黄大片| 欧美大胆美女a级视频| 91精品国产品国语在线不卡| 男人和女人草逼免费视频| 精品亚洲香蕉久久综合网| 欧美日韩人妻中文一区二区| 日本淫片一区二区三区| 日韩精品一级片免费看| 亚洲熟妇熟女久久精品| 欧美日韩国产亚洲三级理论片 | 国语久精品在视频在线观看| 国产又粗又长又大的视频| 欧美大胆美女a级视频| 日本道播放一区二区三区| 日本午夜免费观看视频| 国产日韩久久精品一区| 极品少妇一区二区三区精品视频| 亚洲av在线视频一区| 99久免费精品视频在线观| 麻豆欧美精品国产综合久久| 国产一级内片内射免费看| 中文字幕一二区在线观看| 97人妻精品一区二区三区男同| 久久国产人妻一区二区免费| 亚洲精品伦理熟女国产一区二区 | 亚洲午夜av久久久精品| 国产精品视频一区麻豆专区| 国产麻豆成人精品区在线观看| 欧美精品一区久久精品| 中国少妇精品偷拍视频| 丝袜破了有美女肉体免费观看| 黄色片一区二区三区高清| 国产精品亚洲一级av第二区| 国产精品欧美一区二区三区不卡 | 美国女大兵激情豪放视频播放| 欧美日韩国产的另类视频| 国产亚洲不卡一区二区| 中文字幕亚洲精品人妻| 亚洲最新的黄色录像在线| 色婷婷在线视频免费播放| 色婷婷视频免费在线观看|