片段睡眠現(xiàn)象對覺醒功能的影響及機制研究
發(fā)布時間:2018-02-13 18:28
本文關鍵詞: 片段睡眠 睡眠結構 覺醒 腦電功率 片段睡眠 覺醒 喚醒反應 睡眠潛伏期 片段睡眠 下丘腦 覺醒神經元 orexin 出處:《第二軍醫(yī)大學》2012年博士論文 論文類型:學位論文
【摘要】:【目的】建立片段睡眠剝奪的小鼠動物模型,觀察不同時間片段睡眠剝奪對小鼠睡眠結構的影響,以及小鼠腦電功率譜在片段睡眠剝奪前后的變化。探討片段睡眠小鼠動物模型的效果,并分析片段睡眠現(xiàn)象導致的相應睡眠結構變化后小鼠腦電功率以及睡眠穩(wěn)態(tài)調節(jié)功能的變化。 【方法】成年雄性C57Bl/6J小鼠放置睡眠記錄電極、進行連續(xù)信號采集。隨機分為片段睡眠剝奪組和環(huán)境對照組,分別在基線、片段睡眠剝奪1天和片段睡眠剝奪4周等3個時間點分析小鼠睡眠結構。所有片段睡眠剝奪組小鼠采用我們在美國賓夕法尼亞大學設計建立的模型,進行持續(xù)片段睡眠剝奪。睡眠記錄結果采用SleepSign軟件自動分析后人工修正,并用此軟件分析不同睡眠期的腦電功率。 【結果】1.搖床運動制造片段睡眠現(xiàn)象的效果:和基線狀態(tài)時相比(1404±139),小鼠24h覺醒狀態(tài)轉換次數(shù)在片段睡眠剝奪第1天明顯增加(1989±133,p0.05),睡眠剝奪第28天繼續(xù)顯著增加(2155±188,p0.001)。2.片段睡眠剝奪對小鼠睡眠結構的影響:片段睡眠剝奪組小鼠總覺醒指數(shù)較對照組(30.2±1.7)明顯增加,其中在剝奪第1天(43.9±2.1,p=0.003)和第28天(43.8±3.8,p=0.004)效果持續(xù)存在,并且在恢復睡眠2周后恢復到基線水平(29.2±3.0)。3.片段睡眠剝奪對小鼠腦電功率譜的影響:NREM睡眠期的delta功率在基線(0.37±0.03)較低,片段剝奪第1天(0.42±0.02,p0.05)和第28天(0.55±0.02,p0.01)均較基線明顯升高。 【結論】我們建立的小鼠模型可以完整展示出片段睡眠現(xiàn)象的特征睡眠結構改變,并且能夠對小鼠腦電功率造成相應改變,反應出小鼠睡眠穩(wěn)態(tài)調節(jié)的作用,可以作為下一步研究的基礎。 【目的】觀察不同時間片段睡眠剝奪后,小鼠對不同刺激的喚醒閾值,以及持續(xù)維持覺醒狀態(tài)能力的變化,探討片段睡眠現(xiàn)象對小鼠覺醒功能的損傷情況,并觀察恢復睡眠對上述損傷的逆轉情況。 【方法】成年雄性C57Bl/6J小鼠放置睡眠記錄電極、進行連續(xù)信號采集。隨機分為片段睡眠剝奪組和環(huán)境對照組,參照第一部分建立片段睡眠剝奪模型,分別在基線、片段睡眠剝奪1周、片段睡眠剝奪2-4周和恢復睡眠2周等4個時間點進行5%高濃度CO2刺激、聲音刺激和氣流刺激等3種不同刺激后喚醒潛伏期實驗,以及小鼠多次睡眠潛伏期測試。喚醒潛伏期測試及多次睡眠潛伏期測試中睡眠/覺醒狀態(tài)識別均采用人工判斷。 【結果】1. CO2刺激喚醒潛伏期變化:和基線(74.00±18.69)相比,喚醒潛伏期在片段睡眠剝奪1周(116.40±11.14,p=0.003)、片段睡眠剝奪4周(154.00±7.01,p=0.000)顯著升高。在恢復睡眠2周后恢復至基線水平(101.00±10.41,p=0.062)。2.聲音、氣流刺激閾值:結果顯示片段睡眠剝奪后,小鼠被兩種刺激的喚醒閾值均升高(p0.01),表明片段睡眠現(xiàn)象的喚醒功能損傷不僅限于高濃度CO2刺激,而是一種全面損傷。3.片段睡眠剝奪后小鼠多次睡眠潛伏期:和基線相比(9.44±0.94min),1周片段睡眠剝奪可以明顯降低小鼠的入睡潛伏期(5.89±0.60min,p=0.049),4周片段睡眠剝奪的同樣較基線明顯降低(3.80±0.84min,p=0.001)。2周恢復睡眠后,入睡潛伏期同基線睡眠沒有顯著差異(p=0.10)。 【結論】片段睡眠現(xiàn)象可以明顯損傷小鼠的喚醒反應能力和覺醒維持能力,其中覺醒維持能力可以在恢復睡眠后得到恢復,喚醒反應能力不能得到完全逆轉。 【目的】觀察下丘腦orexin能神經元在不同時間片段睡眠剝奪和恢復睡眠前后的變化,探討orexin能神經元損傷在片段睡眠現(xiàn)象造成覺醒功能損傷中的作用。 【方法】成年雄性C57Bl/6J小鼠隨機分為正常對照組(CT)、SF片段睡眠剝奪組(SF),各組又分CO2持續(xù)刺激組(CO2)及空氣組(RA)。即共分為四組:CT-CO2組,,SF-CO2組, CT-RA組, SF-RA組,每組10只小鼠。片段睡眠剝奪時間為4周,片段睡眠剝奪方法同前。小鼠經麻醉后處死,采用免疫組織化學法檢測小鼠下丘腦覺醒神經元相應神經遞質表達以及Fos的表達,蛋白質免疫印跡技術(Western-blot)測定下丘腦orexin的表達。 【結果】1.片段睡眠剝奪后各組下丘腦Orexin蛋白表達變化:Orexin陽性細胞分布以下丘腦外側區(qū)(LHA)、穹隆周區(qū)及其鄰近區(qū)域為主。經統(tǒng)計分析,各組orexin陽性細胞數(shù)無統(tǒng)計學差異(p0.05)。2.片段睡眠剝奪后各組下丘腦Fos蛋白表達變化:在下丘腦外側區(qū)(LHA),CT-RA組LHA表達Fos陽性細胞較少,CT-CO2,SF-RA,SF-CO2三各組較對照組相比Fos陽性細胞數(shù)均增加。3.片段睡眠剝奪后各組下丘腦Fos陽性的orexin神經元表達變化:陽性率在CT-CO2組最高,雙標細胞占總orexin陽性細胞的50.53%,在CT-RA組次之,為39.33%,在SF-CO2組為26.28%,而在SF-RA組最低,僅占21.16%。SF-RA組與CT-RA組及CT-CO2組的陽性細胞率相比差異均具有統(tǒng)計學意義(p0.05),SF-RA組與CT-RA組及CT-CO2組的陽性細胞率相比差異均具有統(tǒng)計學意義(p0.05)。4. Orexin在小鼠下丘腦的表達變化:Western-blot方法比較CT-RA組及SF-RA組兩組之間小鼠下丘腦orexin蛋白含量的變化。兩組之間下丘腦的orexin蛋白含量之間不存在統(tǒng)計學差異(p0.05)。 【結論】片段睡眠剝奪后orexin蛋白的表達量沒有明顯的改變,但活性的orexin神經元數(shù)量減少,表明片段睡眠現(xiàn)象可以造成小鼠下丘腦orexin能神經元激活能力受到了損傷,可能是片段睡眠導致覺醒功能損害的主要作用遞質。
[Abstract]:Objective To establish a mouse model of sleep deprivation in mice , observe the effects of sleep deprivation on the sleep structure of mice and the changes of brain electrical power spectrum of mice before and after the deprivation of sleep deprivation . Sleep deprivation group mice were randomly divided into two groups : sleep deprivation group and environment control group . The sleep structure of mice was analyzed at 3 time points , such as baseline , segment sleep deprivation , 1 day and 4 weeks of sleep deprivation , respectively . All segments of sleep deprivation group used the model we established at the Pennsylvania University of Pennsylvania . The results of sleep recordings were manually corrected after automatic analysis using SleepSign software and analyzed with this software to analyze the brain electrical power of different periods of sleep . The effects of sleep deprivation on sleep structure in mice were significantly increased ( 2155 鹵 188 , p = 0.004 ) and 28 ( 43.8 鹵 3.8 , p = 0.004 ) and 28 ( 43.8 鹵 3.8 , p = 0.004 ) . Conclusion : The mouse model established by us can completely display the characteristic sleep structure change of the fragment ' s sleep phenomenon , and can change the brain electric power of mice accordingly , and reflect the effect of sleep homeostasis in mice , which can be used as the basis for the next study . Objective To observe the effect of fragment sleep on the wake - up function of mice after sleep deprivation in different time segments , and to investigate the effect of fragment sleep on the wake - up function of mice , and to observe the reversal of the recovery of sleep on the above - mentioned injury . The sleep deprivation model was established in the first part by reference to the first part . The sleep deprivation model was established by reference to the first part . After 3 different stimuli , such as baseline and segment sleep deprivation , 1 week after sleep deprivation , 2 - 4 weeks of sleep deprivation and 2 weeks of recovery , the sleep latency test was performed in mice . The sleep / wake state recognition in the sleep latency test and multiple sleep latency tests were determined manually . The result is incremented by 1 . Compared with baseline ( 74.00 鹵 18.69 ) , the wake - up latency was significantly higher than baseline ( 101.00 鹵 10.41 , p = 0.062 ) . Conclusion The sleep deprivation can significantly impair the ability of awaking reaction and the ability to maintain awaking ability of the mice , and the ability of arousal to maintain can be recovered after the recovery of sleep , and the ability of awakening reaction cannot be completely reversed . Objective : To observe the effects of orexin on sleep deprivation and restoration of sleep before and after sleep deprivation and restoration of sleep deprivation in hypothalamic orexin neurons . Methods Twenty - six adult male C _ 2 groups were divided into four groups : CT - CO2 , SF - CO2 , CT - RA and SF - RA . The results were as follows : CT - CO2 , SF - CO2 , CT - RA and SF - RA . All the 10 mice were divided into four groups : CT - CO2 , SF - CO2 , CT - RA and SF - RA . The expression of orexin protein in the hypothalamus of each group was significantly higher than that in the control group ( p < 0.05 ) . The positive rate of the positive cells in the hypothalamus of the hypothalamus ( LHA ) and the CT - RA group was 26.28 % , and the SF - RA group was 26.28 % . The expression of orexin in hypothalamus of mouse was changed : Western - blot was used to compare the changes of orexin protein content between two groups of CT - RA and SF - RA group . There was no statistical difference between the two groups ( p < 0.05 ) . Conclusion There was no significant change in orexin protein expression after sleep deprivation , but the number of active orexin neurons decreased , suggesting that fragment sleep could cause damage to the activation of orexin neurons in the hypothalamus of mice .
【學位授予單位】:第二軍醫(yī)大學
【學位級別】:博士
【學位授予年份】:2012
【分類號】:R338
【參考文獻】
相關期刊論文 前1條
1 中華醫(yī)學會呼吸病學分會睡眠呼吸疾病學組;阻塞性睡眠呼吸暫停低通氣綜合征診治指南(草案)[J];中華內科雜志;2003年08期
本文編號:1508812
本文鏈接:http://sikaile.net/xiyixuelunwen/1508812.html
最近更新
教材專著