基于概念層次的網(wǎng)絡(luò)挖掘技術(shù)
[Abstract]:Concept hierarchy (Concept Hierarchy) refers to the organization of a large number of concepts in a hierarchical way, so that the meaning of the child concept is more special than its father, and can be summarized by its father concept. The hierarchical conceptual model is different from the ordinary plane conceptual model. In such a model, the distance between concepts is not uniform. From this distance, we can measure the similarity between concepts. Such a model can construct a standard that is closer to reality, which makes the classification, clustering, matching and other work based on this model more reasonable. The establishment of conceptual hierarchy implements a hierarchical standard. By mapping other elements (such as words, query requests, documents) to concepts, you can establish connections between these elements, and these connections contain semantic information. The concept of hierarchical organization is a very common problem in network mining, and many application scenarios are based on such an idea. The work of this topic is roughly divided into three parts. Starting from the bottom layer, we try to mine a conceptual hierarchy model with accurate concept description and reasonable hierarchical division from the end of the network information. Based on the popular socialized tagging, we design a set of methods to extract concepts from socialized tagging data and establish hierarchical relationships. Based on the concept level, we also explore its application in network mining. In order to solve the problem of keyword recommendation in search engine advertising service, we propose a method to improve the coverage and accuracy of recommendation by using the conceptual level. Finally, considering the large scale of the concept level itself, we also hope to apply some visual technology to show the whole picture of the concept level to the user intuitively. Our method is embodied in showing the internal relationship at the conceptual level and its own structure, and has achieved good results.
【學(xué)位授予單位】:上海交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2008
【分類號(hào)】:TP311.13
【共引文獻(xiàn)】
相關(guān)期刊論文 前3條
1 劉偉;孟小峰;孟衛(wèi)一;;Deep Web數(shù)據(jù)集成研究綜述[J];計(jì)算機(jī)學(xué)報(bào);2007年09期
2 周瓊;;Deep web結(jié)構(gòu)化數(shù)據(jù)集成研究綜述[J];科技信息;2009年09期
3 譚春亮;甘丹;陳麗娜;蔣運(yùn)承;;基于Tabu的Deep Web特征選擇算法[J];計(jì)算機(jī)工程與設(shè)計(jì);2008年13期
相關(guān)博士學(xué)位論文 前5條
1 張慧斌;Deep Web查詢接口及查詢結(jié)果抽取研究[D];南開大學(xué);2010年
2 聶鐵錚;Deep Web中Web數(shù)據(jù)庫(kù)集成關(guān)鍵技術(shù)的研究[D];東北大學(xué);2009年
3 寇月;Deep Web實(shí)體搜索的關(guān)鍵技術(shù)研究[D];東北大學(xué);2009年
4 黃健斌;基于條件概率圖模型的Deep Web數(shù)據(jù)抽取與集成研究[D];西安電子科技大學(xué);2007年
5 趙朋朋;Deep Web信息集成若干關(guān)鍵技術(shù)研究[D];蘇州大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 張智;基于本體的Deep Web數(shù)據(jù)源的分類研究[D];南京信息工程大學(xué);2011年
2 王彩亮;云存儲(chǔ)環(huán)境下數(shù)據(jù)副本管理策略研究[D];云南大學(xué);2011年
3 羅斐;基于本體的Deep Web數(shù)據(jù)源分類和查詢接口模式抽取[D];南京航空航天大學(xué);2010年
4 李海濱;Deep Web動(dòng)態(tài)搜索的研究[D];北京化工大學(xué);2011年
5 屈振東;Deep Web環(huán)境下數(shù)據(jù)源選擇和結(jié)果緩存的研究[D];東北大學(xué);2009年
6 鄭冬冬;DeepWeb信息集成系統(tǒng)關(guān)鍵技術(shù)研究[D];蘇州大學(xué);2006年
7 高嶺;Deep Web分類搜索引擎關(guān)鍵技術(shù)研究[D];蘇州大學(xué);2007年
8 陳琛;基于社會(huì)化標(biāo)簽的個(gè)性化搜索研究[D];揚(yáng)州大學(xué);2008年
9 李文駿;Deep Web數(shù)據(jù)源發(fā)現(xiàn)和語(yǔ)義標(biāo)注技術(shù)研究[D];蘇州大學(xué);2008年
10 王波;Deep Web數(shù)據(jù)庫(kù)選擇和查詢轉(zhuǎn)換技術(shù)研究[D];大連理工大學(xué);2009年
,本文編號(hào):2473706
本文鏈接:http://sikaile.net/wenyilunwen/guanggaoshejilunwen/2473706.html