基于商品特征關(guān)聯(lián)度的購物客戶評論可信排序方法
發(fā)布時間:2019-05-08 03:30
【摘要】:電子商務網(wǎng)站中,海量無序的用戶評論可能導致消費者客戶"迷失"其中,無法識別評論的可信和真假。針對這個問題,提出了一種根據(jù)用戶評論的可信度對其重新排序的方法。首先,針對網(wǎng)站商品廣告信息,關(guān)注在線用戶評論內(nèi)容是否和商品功能屬性密切相關(guān),設(shè)計了基于HTML腳本格式的購物網(wǎng)站中商品關(guān)鍵特征提取算法,給出了基于自然語言處理的用戶評論特征詞提取方法;然后,利用詞語相似度來分析商品特征和用戶評論內(nèi)容之間的關(guān)聯(lián)度,提出了購物客戶評論的可信度計算方法;最后,通過實例分析,實現(xiàn)了大量購物客戶評論的可信排序,使得用戶無須瀏覽全部或者大部分之后就能判斷哪些評價可以信任或者具有實際的參考價值,降低了信息搜索成本,提高了決策效率。
[Abstract]:In e-commerce websites, the mass of disordered user comments may cause consumers to "lose" them, and can not identify the credibility and authenticity of the comments. In order to solve this problem, this paper proposes a method to reorder user comments according to their credibility. Firstly, focusing on whether the online user comment content is closely related to the product function attribute, this paper designs the key feature extraction algorithm of the shopping website based on HTML script format, aiming at the product advertisement information of the website. The method of extracting user comment feature words based on natural language processing is presented. Then, using the similarity degree of words to analyze the correlation between the characteristics of goods and the content of user's comments, and put forward the method of calculating the credibility of shopping customers' comments. Finally, through the analysis of examples, the trusted ranking of a large number of shopping customers' comments is realized, so that users can judge which evaluation can be trusted or have practical reference value without having to browse all or most of them. It reduces the cost of information search and improves the efficiency of decision-making.
【作者單位】: 同濟大學計算機科學與技術(shù)系;國家高性能計算機工程技術(shù)研究中心同濟分中心;
【基金】:國家863計劃項目(2009AA012201) 國家自然科學基金資助項目(61272107,61202173,61103068) 上海市優(yōu)秀學科帶頭人計劃項目(10XD1404400) 教育部網(wǎng)絡時代的科技論文快速共享專項研究課題項目(20110740001) 華為創(chuàng)新研究計劃項目(IRP-2013-12-03)
【分類號】:TP393.092;TP391.1
[Abstract]:In e-commerce websites, the mass of disordered user comments may cause consumers to "lose" them, and can not identify the credibility and authenticity of the comments. In order to solve this problem, this paper proposes a method to reorder user comments according to their credibility. Firstly, focusing on whether the online user comment content is closely related to the product function attribute, this paper designs the key feature extraction algorithm of the shopping website based on HTML script format, aiming at the product advertisement information of the website. The method of extracting user comment feature words based on natural language processing is presented. Then, using the similarity degree of words to analyze the correlation between the characteristics of goods and the content of user's comments, and put forward the method of calculating the credibility of shopping customers' comments. Finally, through the analysis of examples, the trusted ranking of a large number of shopping customers' comments is realized, so that users can judge which evaluation can be trusted or have practical reference value without having to browse all or most of them. It reduces the cost of information search and improves the efficiency of decision-making.
【作者單位】: 同濟大學計算機科學與技術(shù)系;國家高性能計算機工程技術(shù)研究中心同濟分中心;
【基金】:國家863計劃項目(2009AA012201) 國家自然科學基金資助項目(61272107,61202173,61103068) 上海市優(yōu)秀學科帶頭人計劃項目(10XD1404400) 教育部網(wǎng)絡時代的科技論文快速共享專項研究課題項目(20110740001) 華為創(chuàng)新研究計劃項目(IRP-2013-12-03)
【分類號】:TP393.092;TP391.1
【相似文獻】
相關(guān)期刊論文 前10條
1 易麗萍;李紅霞;;HowNet在文本挖掘中的應用[J];電腦知識與技術(shù);2009年12期
2 申麗平;;WordNet在查詢擴展中的應用研究[J];科技信息;2009年14期
3 田久樂;趙蔚;;基于同義詞詞林的詞語相似度計算方法[J];吉林大學學報(信息科學版);2010年06期
4 楊喜權(quán);國,
本文編號:2471583
本文鏈接:http://sikaile.net/wenyilunwen/guanggaoshejilunwen/2471583.html