本文關(guān)鍵詞:應(yīng)用隨機過程
更多相關(guān)文章: 應(yīng)用 隨機 過程 概率 模型 導論 英文版 11版
本書特色
北美精算師考試指定參考書
應(yīng)用隨機過程經(jīng)典教材,學習精算學、人工智能、機器學習的必備參考書!
目錄
Preface
閱讀
Introduction to Probability Theory
閱讀
Random Variables
2.6.1 The Joint Distribution of the Sample Mean and Sample Variance from a Normal Population
Conditional Probability and Conditional Expectation
3.4.1 Computing Variances by Conditioning
3.5 Computing Probabilities by Conditioning
3.6 Some Applications
3.6.1 A List Model
3.6.2 A Random Graph
3.7 An Identity for Compound Random Variables
Exercises
Markov Chains
4.4.1 Limiting Probabilities
4.5 Some Applications
4.11.1 Predicting the States
Exercises
References
The Exponential Distribution and the Poisson Process
Continuous-Time Markov Chains
Renewal Theory and Its Applications
7.5.1 Alternating Renewal Processes
Queueing Theory
8.1 Introduction
8.2 Preliminaries
8.2.1 Cost Equations
8.2.2 Steady-State Probabilities
8.3 Exponential Models
8.4 Network of Queues
8.4.1 Open Systems
8.4.2 Closed Systems
8.7.1 The G / M / 1 Busy and Idle Periods
Reliability Theory
9.1 Introduction
9.2 Structure Functions
9.2.1 Minimal Path and Minimal Cut Sets
9.3 Reliability of Systems of Independent Components
9.4 Bounds on the Reliability Function
9.4.1 Method of Inclusion and Exclusion
9.4.2 Second Method for Obtaining Bounds on r (p)
9.5 System Life as a Function of Component Lives
9.6 Expected System Lifetime
9.6.1 An Upper Bound on the Expected Life of a Parallel System
9.7 Systems with Repair
9.7.1 A Series Model with Suspended Animation
Exercises
References
Brownian Motion and Stationary Processes
10.3.1 Brownian Motion with Drift
10.3.2 Geometric Brownian Motion
10.4 Pricing Stock Options
Simulation
11.4.1 The Alias Method
11.5 Stochastic Processes
11.5.1 Simulating a Nonhomogeneous Poisson Process
11.5.2 Simulating a Two-Dimensional Poisson Process
11.8.1 Coupling from the Pas
11.8.2 Another Approach
Exercises
References
Appendix: Solutions to Starred Exercises
Index
作者介紹
Sheldon M. Ross 國際知名概率與統(tǒng)計學家,南加州大學工業(yè)工程與運籌系系主任。1968年博士畢業(yè)于斯坦福大學統(tǒng)計系,曾在加州大學伯克利分校任教多年。研究領(lǐng)域包括:隨機模型、仿真模擬、統(tǒng)計分析、金融數(shù)學等。Ross教授著述頗豐,,他的多種暢銷數(shù)學和統(tǒng)計教材均產(chǎn)生了世界性的影響,如《概率論基礎(chǔ)教程(第8版)》等。
大家也喜歡

應(yīng)用隨機過程:概率模型導論(第11版)
Sheldon M.Ross
龔光魯
譯
本書是一部經(jīng)典的隨機過程著作,敘述深入淺出、涉及面廣。主要內(nèi)容有隨機變量、條件期望、馬爾可夫鏈、指數(shù)分布、泊松...

Dimitri P.Bertsekas
John N.Tsitsiklis
鄭國忠
童行偉
譯
本書是在MIT開設(shè)概率論入門課程的基礎(chǔ)上編寫的, 其內(nèi)容全面, 例題和習題豐富, 結(jié)構(gòu)層次性強, 能夠滿足不同...
本文編號:817042
本文鏈接:http://sikaile.net/wenshubaike/dxkc/817042.html