天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 論文百科 > 大學(xué)課程 >

溫伯格:量子力學(xué)的困境

發(fā)布時(shí)間:2017-11-05 06:35

  本文關(guān)鍵詞:量子力學(xué)


  更多相關(guān)文章: 量子力學(xué) 愛因斯坦 Steven Weinberg 量子糾纏


雷鋒網(wǎng)(公眾號(hào):雷鋒網(wǎng))按:本文由知社學(xué)術(shù)圈原創(chuàng)編譯。

20世紀(jì)頭十年間量子力學(xué)的發(fā)展給許多物理學(xué)家?guī)頉_擊。時(shí)至今日,盡管量子力學(xué)已經(jīng)取得巨大成功,關(guān)于它的意義與未來的爭論卻仍在繼續(xù)。

本文是著名理論物理學(xué)家Steven Weinberg為紐約書評(píng)所撰寫,將于1月19日出版。溫伯格因統(tǒng)一弱相互作用與電磁作用而榮獲諾貝爾物理學(xué)獎(jiǎng),其對(duì)量子力學(xué)本質(zhì)的思考和掙扎,尤其發(fā)人深省。

溫伯格:量子力學(xué)的困境


量子力學(xué)的第一個(gè)沖擊是對(duì)物理學(xué)家在1900年以前早已習(xí)慣的范疇所帶來的挑戰(zhàn)。彼時(shí)我們有粒子—原子、然后是電子和原子核—然后有場—這是電、磁力以及引力可以彰顯的空間環(huán)境。光則被清晰的認(rèn)作電磁場的自持振蕩。然而為了理解受熱物體的發(fā)光問題,1905年阿爾伯特·愛因斯坦發(fā)現(xiàn)需要把光波表述成無質(zhì)量的粒子束,這些粒子后被稱為光子。

溫伯格:量子力學(xué)的困境

到了1920年代,根據(jù)路易斯·德布羅意和厄爾文·薛定諤的理論,被一直看作典型粒子的電子,似乎在某些情況下表現(xiàn)出了波動(dòng)性。為了解釋原子的穩(wěn)定能級(jí),物理學(xué)家們不得不放棄了電子如同牛頓行星一般在軌道內(nèi)圍繞原子核轉(zhuǎn)動(dòng)的見解。原子中的電子更像是圍繞契合在原子核周圍的波,如同琴管中的聲波一樣[1]。至此這個(gè)世界的范疇變得亂套了。

更糟糕的是,電子波并非是電子物質(zhì)的波,這和海浪是水波完全不同。的確,馬克斯·伯恩開始意識(shí)到電子波是概率波。也就是說,當(dāng)一個(gè)自由電子同一個(gè)原子發(fā)生碰撞后,我們原則上不能預(yù)測它會(huì)彈射到哪個(gè)方向上去。電子波在與原子碰撞后會(huì)遍及所有方向,這和海浪撞到暗礁上類似。正如伯恩所意識(shí)到的,這并不意味電子本身被散播各處,不可分割的電子仍被散射至某個(gè)方向但不是一個(gè)被精確預(yù)測的方向上。電子更有可能在一個(gè)波分布更稠密的方向上但同時(shí)其他所有方向都有可能。

1920年代的物理學(xué)家對(duì)概率并非陌生,但是概率通常被看作是那些還在研究中的不完美知識(shí)的反映,而不是反映了潛在物理學(xué)定律中的非決定性。牛頓的運(yùn)動(dòng)與引力理論確立了決定論規(guī)律的準(zhǔn)則。當(dāng)我們精準(zhǔn)的知道某一給定時(shí)刻太陽系中物體的位置和速度時(shí),牛頓定律就能很精確的告訴我們未來很長時(shí)間內(nèi)它們都在什么地方。只有我們的所知并不完善時(shí)概率才會(huì)出現(xiàn)在牛頓物理學(xué)中,比如我們無法精確預(yù)測一對(duì)篩子將擲出幾點(diǎn)。然而對(duì)于新的量子力學(xué),這種物理學(xué)規(guī)律的即時(shí)確定性似乎消失了。

一切都如此奇怪。1926年愛因斯坦在一封寫給伯恩的信中這樣抱怨:

量子力學(xué)令人印象深刻。但是我的內(nèi)心中有個(gè)聲音告訴我這仍非真實(shí)。這個(gè)理論很好但卻很難讓我們更接近上帝的秘密,我十分確定他不玩篩子[2]。

到了1964年,理查德·費(fèi)曼在康奈爾的先驅(qū)講座中哀嘆:“我想我可以肯定的說沒有人能理解量子力學(xué)”[3]。量子力學(xué)與舊時(shí)代的決裂如此鮮明,以至于之前所有的物理學(xué)理論都被稱為“經(jīng)典”的。

量子力學(xué)的古怪在大多數(shù)場合倒也沒什么。物理學(xué)家學(xué)會(huì)了如何利用它來更精確的計(jì)算原子能級(jí),以及粒子碰撞時(shí)沿某個(gè)方向的散射概率。勞倫斯·克勞斯給量子力學(xué)對(duì)氫原子能譜中某個(gè)效應(yīng)的計(jì)算冠以“整個(gè)科學(xué)中最好的最準(zhǔn)確的預(yù)測”[4]。原子物理之外,基諾·沙格瑞列出了量子力學(xué)的早期應(yīng)用,包括分子中的原子束縛、原子核的放射性衰變、導(dǎo)電性、磁性以及電磁輻射[5]。接下來的應(yīng)用涵蓋了半導(dǎo)體和超導(dǎo)理論、白矮星和中子星、核力、以及基本粒子。即使是現(xiàn)代最具冒險(xiǎn)精神的探索,譬如弦論,也筑基于量子力學(xué)原理。

很多物理學(xué)家開始覺得愛因斯坦、費(fèi)曼以及其他一些人對(duì)于量子力學(xué)的那些新奇之事的反應(yīng)有些夸張。這也曾經(jīng)是我的看法。畢竟,牛頓的理論也曾經(jīng)讓他的同輩們感到不舒服。牛頓引入過讓批評(píng)者難以理解的力-引力。它跟任何接觸式的推拉都無關(guān),而且很難在哲學(xué)或者是純數(shù)學(xué)的基礎(chǔ)上加以解釋。他的理論也放棄了托勒密和開普勒的主要目標(biāo),即通過第一原理來計(jì)算行星軌道。但是對(duì)牛頓理論的反對(duì)聲終歸煙消云散。牛頓和他的追隨者不僅成功的解釋了行星運(yùn)動(dòng)和蘋果下落,也解釋了彗星和衛(wèi)星運(yùn)動(dòng)以及地球的形狀 和它轉(zhuǎn)動(dòng)軸方向的改變。到十八世紀(jì)結(jié)束前這些成就已經(jīng)確立了牛頓的運(yùn)動(dòng)和引力理論是正確的,或至少是一種極為精準(zhǔn)的近似。顯然,過分要求新的物理學(xué)理論應(yīng)該符合某些預(yù)想的哲學(xué)標(biāo)準(zhǔn)本身就是一個(gè)錯(cuò)誤。

不同于經(jīng)典物理,量子力學(xué)中系統(tǒng)的狀態(tài)不是由每個(gè)粒子的位置和速度、以及各種場的值與變化率來描述的。取而代之的,任意時(shí)刻的系統(tǒng)狀態(tài)由波函數(shù)描述,它本質(zhì)上就是一組數(shù)字,每個(gè)數(shù)字都對(duì)應(yīng)著一個(gè)可能的系統(tǒng)構(gòu)形[6]。對(duì)于單粒子系統(tǒng),所有的粒子可能占據(jù)的空間位置對(duì)對(duì)應(yīng)一個(gè)這樣的數(shù)字。這類似于經(jīng)典物理中聲波的描述,不同在于代表聲波每個(gè)空間位置的數(shù)字給出了那個(gè)點(diǎn)上的氣壓,而量子力學(xué)中代表某個(gè)特定位置粒子波函數(shù)的數(shù)字反映出那個(gè)點(diǎn)上的粒子存在概率。這有什么可怕的呢?顯然,對(duì)于愛因斯坦和薛定諤來說,逃避使用量子力學(xué)是一個(gè)令人扼腕的失誤,這將他們自己與其他人取得的那些令人激動(dòng)的進(jìn)展徹底隔絕。

即便如此,我也不像以前那樣確信量子力學(xué)的未來。一個(gè)不好的信號(hào)是即使那些最適應(yīng)量子力學(xué)的物理學(xué)家們也無法就它的意義達(dá)成共識(shí)。這種分歧主要產(chǎn)生于量子力學(xué)中測量的本質(zhì)。這個(gè)問題可以用一個(gè)簡單的例子來說明:電子自旋的測量(一個(gè)粒子在任意方向的自旋是它圍繞該方向軸的轉(zhuǎn)動(dòng)量)。所有的理論和實(shí)驗(yàn)都支持的結(jié)論是:測量一個(gè)電子沿某個(gè)選定方向的自旋只能得到兩種可能的值。一個(gè)是正的普適常數(shù) (這個(gè)常數(shù)是在1900年最先由馬克斯·普朗克在他的熱輻射理論中提出,大小為h /4π)。另外一個(gè)則是前面這個(gè)的相反數(shù)。這兩個(gè)自旋值正好對(duì)應(yīng)于電子沿選定方向上的順時(shí)針或逆時(shí)針旋轉(zhuǎn)。

不過只有當(dāng)測量完成它們才會(huì)成為唯二的可能。一個(gè)電子自旋在測量前就像一個(gè)音樂和弦一樣,由兩個(gè)音符疊加而成,這兩個(gè)音符分別對(duì)應(yīng)正負(fù)自旋,每個(gè)音符都有自己的大小。如同一個(gè)和弦奏出不同于組分音符的聲音,電子自旋在測量前是由確定自旋的兩個(gè)態(tài)疊加而成,這種疊加態(tài)在定性上完全不同于其中任意一個(gè)態(tài)。同奏樂類似,對(duì)自旋的測量行為就像是一下把和弦調(diào)到某個(gè)特定的音符上去,從而我們只能聽到這單個(gè)音符。

這些可以用波函數(shù)來說明。如果我們忽略其他關(guān)于電子的一切而只考慮自旋,那它的波函數(shù)跟波動(dòng)性其實(shí)沒什么關(guān)系。只有兩個(gè)數(shù),每個(gè)數(shù)代表自旋沿某個(gè)選定方向的正負(fù),類似于和弦中每個(gè)音符的振幅[7]。在測量自旋前,電子波函數(shù)通常對(duì)于正負(fù)自旋都有非零值。

量子力學(xué)中的波恩定則告訴我們?nèi)绾斡?jì)算實(shí)驗(yàn)中得到各種不同結(jié)果的概率。舉例來說,波恩定則告訴我們測量發(fā)現(xiàn)特定方向自旋的正或負(fù)值的概率正比于這兩個(gè)自旋態(tài)的波函數(shù)中數(shù)字的平方[8]。

把概率引入物理學(xué)原理曾困擾物理學(xué)家,但是量子力學(xué)的真正困難不在于概率。這點(diǎn)我們可以承受。困難在于量子力學(xué)波函數(shù)隨時(shí)演化的方程,薛定諤方程,本身并不涉及概率。它就像牛頓運(yùn)動(dòng)方程和引力方程一樣具有確定性。也就是說,一旦給定某時(shí)刻的波函數(shù),薛定諤方程就能夠準(zhǔn)確告訴你未來任意時(shí)刻的波函數(shù)。甚至不會(huì)出現(xiàn)混沌(一種牛頓力學(xué)中對(duì)初始條件極其敏感的現(xiàn)象)的可能性。所以如果我們認(rèn)定整個(gè)測量過程都是由量子力學(xué)方程來確定,而這些方程又是確定性的,那量子力學(xué)中的概率究竟是怎么來的呢?

一個(gè)普通的答案是,在測量中自旋(或其他被測量)被放置在一個(gè)與之相互作用的宏觀環(huán)境中,這個(gè)環(huán)境則以一種無法預(yù)測的方式震動(dòng)。舉例來說,這個(gè)環(huán)境可能是一束用來觀測系統(tǒng)的光束中的大量光子,在實(shí)際中它如同一陣傾盆大雨一樣無法預(yù)測。這樣的環(huán)境引起了波函數(shù)疊加態(tài)的坍縮,最終導(dǎo)致了測量的不可預(yù)測性(即所謂的退相干)。就像是一個(gè)嘈雜的背景不知怎么的就讓一個(gè)和弦只能發(fā)出一個(gè)音符。但是這個(gè)答案回避了問題實(shí)質(zhì)。如果確定性的薛定諤方程不僅決定了自旋而且連同測量儀器以及使用它的物理學(xué)家的隨時(shí)演化,那么原則上測量結(jié)果不應(yīng)是不可預(yù)測的。所以我們?nèi)匀灰獑枺?strong>量子力學(xué)中的概率究竟是怎么來的?

這個(gè)謎題的一個(gè)回答是1920年代尼爾斯·波爾給出的,后世稱之為量子力學(xué)的哥本哈根表述。根據(jù)波爾的見解,測量過程中系統(tǒng)狀態(tài)(比如自旋)會(huì)以一種量子力學(xué)無法描述的方式坍塌成一種結(jié)果或是另一種,它本質(zhì)上就是無法預(yù)測的。這個(gè)答案今天普遍認(rèn)為是不可接受的。按照波爾的意思,似乎根本就無法區(qū)分哪里量子力學(xué)是適用的哪里不是。碰巧彼時(shí)我還是哥本哈根波爾研究所的一個(gè)研究生,但那時(shí)波爾聲望正隆而我還很年輕,我從未有機(jī)會(huì)向他問起這個(gè)問題。

今天存在有兩種廣泛采用的對(duì)待量子力學(xué)的方式,一種是“現(xiàn)實(shí)主義”,另一種是“工具主義”,這兩種方式看待測量中概率的起源截然不同[9]。但是基于我下面要給出的理由,它們在我看來都不太令人滿意[10]。

工具主義其實(shí)與哥本哈根表述一脈相承的,但是它不再構(gòu)想量子力學(xué)所無法描述的現(xiàn)實(shí)的邊界,它直接否認(rèn)了量子力學(xué)是對(duì)現(xiàn)實(shí)的一種描述。波函數(shù)仍然存在,不過它不代表現(xiàn)實(shí)的粒子或者場,取而代之的它僅僅作為提供測量結(jié)果預(yù)測的工具。

對(duì)我來說似乎它的問題不僅僅在于放棄了自古以來科學(xué)的目標(biāo):尋求世界的終極奧義。它更是以一種令人遺憾的方式投降。在工具主義論中,我們必須假定,當(dāng)人們開始測量時(shí),應(yīng)用波函數(shù)計(jì)算測量結(jié)果的概率的規(guī)則(例如前文提到的伯恩定則)是自然界的基本法則。于是乎人類本身就被帶入自然界最基本的規(guī)律層次。正如一位量子力學(xué)的先驅(qū),尤金·魏格納所說,“永遠(yuǎn)無法用一種完全自洽的卻又跟意識(shí)無關(guān)的方式構(gòu)建起量子力學(xué)的定律”[11]。

工具主義與達(dá)爾文之后變?yōu)榭赡艿囊粋(gè)觀點(diǎn)背道而馳,那就是這個(gè)世界被非人力的自然法則所統(tǒng)治,人類行為以及其他所有一切都要受其統(tǒng)御。這并非是我們要反對(duì)這樣思考人類。我們其實(shí)更想要理解人類與自然的關(guān)系,不是簡單的通過把它并入我們自以為的自然界的基本規(guī)律中來設(shè)想這個(gè)關(guān)系的本質(zhì),而是從不顯含人類的基本規(guī)律中推導(dǎo)而出這個(gè)關(guān)系的本質(zhì);蛟S我們終將不得不放棄這個(gè)遠(yuǎn)大目標(biāo),但是我認(rèn)為至少現(xiàn)在還不是時(shí)候。

有些物理學(xué)家采用工具主義的方法,他們聲稱我們從波函數(shù)中得到的概率是客觀存在的概率,不依賴于人們究竟有沒有做測量。我則不認(rèn)為這觀點(diǎn)是站得住腳的。量子力學(xué)中這些概率只有當(dāng)人們選擇什么去測量時(shí)才存在,比如沿某個(gè)方向上的自旋。不同于經(jīng)典物理,量子力學(xué)中必定存在一個(gè)選擇,這是因?yàn)?strong>量子力學(xué)中不是所有量可以同時(shí)被測量。正如維爾納·海森堡意識(shí)到的,一個(gè)粒子不能同時(shí)有一個(gè)確定的位置和速度。測量其中一個(gè)就無法測量另一個(gè)。同樣的,如果我們知道一個(gè)電子自旋的波函數(shù),我們就可以去計(jì)算我們測量得出這個(gè)電子朝北的方向上有正自旋的概率,或者是測量得到朝東方向上有正自旋的概率。但是我們不能問同時(shí)在兩個(gè)方向上的正自旋的概率是多少,因?yàn)闆]有一個(gè)態(tài)可以表示電子在兩個(gè)不同方向上都有確定自旋。

與工具主義相反的另一種對(duì)待量子力學(xué)的方式—現(xiàn)實(shí)主義避免了部分上面提到的問題,F(xiàn)實(shí)主義者切實(shí)的把波函數(shù)及其確定性的演化當(dāng)作對(duì)現(xiàn)實(shí)的描述。但是這也帶來其他的問題。

溫伯格:量子力學(xué)的困境

現(xiàn)實(shí)主義有一個(gè)非常奇怪的推論,最早是1957年在已故的休·艾弗雷特的普林斯頓的博士畢業(yè)論文中提出的。當(dāng)一個(gè)物理學(xué)家測量一個(gè)電子自旋時(shí),比如朝北方向上,電子、測量儀器連同實(shí)施測量的物理學(xué)家的波函數(shù)的演化都假定是確定性的,均由薛定諤方程給出。但是隨著這幾者在測量中發(fā)生相互作用,波函數(shù)變成兩項(xiàng)的疊加,一個(gè)是電子自旋是正值,這個(gè)世界的每個(gè)人去觀測都會(huì)看到它是正值,而另一個(gè)則是負(fù)值,同樣世界每個(gè)人都認(rèn)為它是負(fù)的。因?yàn)閷?duì)于波函數(shù)的每一項(xiàng)每個(gè)人都堅(jiān)信電子自旋只有一個(gè)確定符號(hào),于是這種疊加態(tài)的存在根本無法探測。從而這個(gè)世界的歷史便分裂為彼此完全不相關(guān)的兩支。

這就夠奇怪了,然而歷史的分裂不僅僅會(huì)發(fā)生在某人去測量自旋時(shí)。在現(xiàn)實(shí)主義者的觀點(diǎn)中,這個(gè)世界的歷史時(shí)時(shí)都在進(jìn)行無窮無盡的分裂; 每當(dāng)有宏觀物體伴隨量子狀態(tài)的選擇時(shí)歷史就會(huì)分裂。這種不可思議的歷史分裂為科幻小說提供了素材[12],而且為多重宇宙提供了依據(jù),眾多宇宙之中某個(gè)特定宇宙歷史中的我們發(fā)現(xiàn)自己被限定在條件優(yōu)渥從而允許有意識(shí)生命存在的歷史中的一個(gè)。但是展望這些平行歷史令人深深不安,同其他很多物理學(xué)家一樣,我傾向于單一存在的歷史。

在我們狹隘的各人喜好之外,現(xiàn)實(shí)主義論中還有件事讓人不爽。這種觀點(diǎn)中多重宇宙的波函數(shù)的確進(jìn)行確定性的演化。我們?nèi)匀豢梢哉摷霸诓煌瑫r(shí)間段上在任意某個(gè)歷史中測量多次得到多個(gè)可能結(jié)果的概率,但是決定這些觀測概率的規(guī)則必須依從整個(gè)多重宇宙的決定性演化。若非如此,那預(yù)測概率時(shí)我們就得額外假設(shè)人們在測量時(shí)發(fā)生了什么,這樣我們就回到了工具主義的缺點(diǎn)上。盡管一些現(xiàn)實(shí)主義的嘗試已經(jīng)得到類似于波恩定則這樣和實(shí)驗(yàn)配合很好的推論,但我覺得他們都不會(huì)取得最終的成功。

其實(shí)早在艾弗雷特提出多重歷史很久之前,量子力學(xué)的現(xiàn)實(shí)主義論就已陷入另一個(gè)麻煩之中。這個(gè)麻煩是在1935年愛因斯坦與他的合作者鮑里斯·波爾多斯基和南森·羅斯一起撰寫的文章中提出的,與所謂的“糾纏”現(xiàn)象有關(guān)[13]。

我們一般都自然認(rèn)為可以“局域”的描述現(xiàn)實(shí)。我可以告訴你我實(shí)驗(yàn)室發(fā)生了什么,你可以告訴我你實(shí)驗(yàn)室怎么樣,不過我們沒必要非得同時(shí)說兩個(gè)。但是在量子力學(xué)中,系統(tǒng)可以處于距離很遠(yuǎn)但相互關(guān)聯(lián)的兩部分(像剛棒的兩端)的糾纏態(tài)中。

舉例來說,假設(shè)我們有一對(duì)總自旋沿任意方向都為零的電子。這樣一個(gè)態(tài)的波函數(shù)(只考慮自旋部分)是兩項(xiàng)之和:一項(xiàng)中,沿北方向上電子A自旋為正,B自旋為負(fù),另一項(xiàng)中正負(fù)號(hào)正好反過來。這時(shí)兩個(gè)電子的自旋就可以說糾纏在一起了。只要不去干涉這對(duì)自旋,即使是兩個(gè)電子分開很遠(yuǎn)距離,這樣一個(gè)糾纏態(tài)仍會(huì)一直持續(xù)。無論分開多遠(yuǎn),我們也只能討論兩個(gè)電子的波函數(shù)而不是單獨(dú)一個(gè)的。糾纏帶給愛因斯坦對(duì)量子力學(xué)的不信任感甚至超過概率的出現(xiàn)。

雖然聽起來很奇怪,但從量子力學(xué)那里繼承來的糾纏事實(shí)上已經(jīng)在實(shí)驗(yàn)上被觀測到。但是這種如此“非局域”的東西如何能代表現(xiàn)實(shí)呢?

針對(duì)量子力學(xué)的缺點(diǎn)又應(yīng)該做些什么呢?一個(gè)合理的回應(yīng)包含在了那句經(jīng)典的給愛追究問題學(xué)生的建議中:“Shut up and calculate” 其實(shí)如何去用量子力學(xué)并無爭議,有爭議的是如何闡述它的意義,所以或許問題僅僅就是一個(gè)詞而已。

另一方面,如何在當(dāng)前量子力學(xué)框架下理解測量的問題或許是在警告我們理論仍需要修正。量子力學(xué)對(duì)原子解釋的如此完美,以至于任何應(yīng)用到如此小的對(duì)象上的新理論都和量子力學(xué)近乎不可分辨。但是或許新理論可以仔細(xì)設(shè)計(jì),使得大物體比如物理學(xué)家和他們的儀器即使在孤立的情況下也可以發(fā)生快速的自發(fā)式坍縮,,從而由概率演化能給出量子力學(xué)的期待值。艾弗雷特的多重歷史也自然的坍縮成一個(gè)。發(fā)明新理論的目標(biāo)即是如此,但不是通過給測量在物理學(xué)規(guī)律中一個(gè)特殊地位而達(dá)成,而是使之作為那些成為正常物理進(jìn)程的后量子力學(xué)理論的一部分。

發(fā)展這樣新理論有一個(gè)困難是實(shí)驗(yàn)沒能給我們指明方向—目前所有的實(shí)驗(yàn)數(shù)據(jù)都符合通常的量子力學(xué)。我們倒是從一些普適原理中得到些許幫助,但是這些都最終令人驚訝的演變?yōu)閷?duì)新理論的嚴(yán)苛限制。

顯然,概率必須為正數(shù),其總和必須為100%。還有一個(gè)通常的量子力學(xué)已經(jīng)滿足的條件,就是糾纏態(tài)中測量過程中概率的演化不能用來發(fā)出瞬時(shí)信號(hào),否則就違反相對(duì)論。狹義相對(duì)論要求不能有任何信號(hào)傳遞速度超過光速。當(dāng)把這些條件合在一起,最一般的概率演化就滿足一組方程(即所謂的林布萊德方程)中的一個(gè)[14]。這組林布萊德方程涵蓋了通常量子力學(xué)中的薛定諤方程作為一個(gè)特例。但是這些方程同時(shí)涉及了一系列背離量子力學(xué)的量。關(guān)于這些量的細(xì)節(jié)我們目前無疑毫無了解。盡管幾乎不為理論界之外所注意到,還是有了一些很有意思的文章,比如在利亞斯特的吉安·卡洛·吉拉爾地、阿爾貝托·里米尼以及圖里奧·韋伯在1986年寫的頗有影響力的文章,就用林布萊德方程以不同的方式來一般化量子力學(xué)。

近來我一直在思考原子鐘中一個(gè)可能尋找到背離通常量子力學(xué)跡象的實(shí)驗(yàn)。在每個(gè)原子鐘的核心都有一個(gè)已故的諾曼·拉姆齊發(fā)明的裝置,它是用來調(diào)節(jié)微波或是可見輻射的頻率到一個(gè)已知的自然頻率上,在這個(gè)頻率上當(dāng)一個(gè)原子的波函數(shù)正處于兩個(gè)不同能級(jí)的疊加態(tài)時(shí)會(huì)發(fā)生振蕩。這個(gè)自然頻率就正好等于原子鐘采用的兩個(gè)原子能級(jí)之差再除以普朗克常數(shù)。同塞弗爾的鉑銥合金圓柱體作為質(zhì)量的固定基準(zhǔn)一樣,這個(gè)頻率在任何外部條件下都保持不變,因此可以作為頻率的固定基準(zhǔn)。

把一個(gè)電磁波的頻率調(diào)節(jié)到這個(gè)基準(zhǔn)頻率上就有點(diǎn)像調(diào)節(jié)一個(gè)節(jié)拍器的頻率和另一個(gè)節(jié)拍器匹配。如果你同時(shí)啟動(dòng)兩個(gè)節(jié)拍器而且在敲了一千下后它們還是保持一致,那么你就就知道它們的頻率至少在千分之一的精度上相同。量子力學(xué)計(jì)算表明在一些原子鐘中調(diào)節(jié)精度可達(dá)10^-17,而且這種精度確實(shí)已實(shí)現(xiàn)。但是如果林布萊德方程中那些代表著對(duì)量子力學(xué)修正的項(xiàng)(以能量的形式)的量級(jí)到了原子鐘中應(yīng)用的兩個(gè)原子能級(jí)差的1/10^17,那么這個(gè)精度也已經(jīng)明顯不夠用了。如此說來新的修正項(xiàng)想必比這個(gè)量級(jí)還要小。

這個(gè)極限究竟有多顯著?可惜的是,這些對(duì)量子力學(xué)修正的想法不僅帶有推測性質(zhì)而且還很模糊,我們也不知道應(yīng)該期待量子力學(xué)的修正究竟有多大。想到此處更是思及量子力學(xué)的未來,我唯有引用維奧拉在《第十二夜》中的話:

"O time, thou must untangle this, not I"

“啊時(shí)間!你必須解決此事,而不是我”。

參考文獻(xiàn):

1.開口或者閉合琴管中的聲波條件要求1/4波長的奇數(shù)倍或是半波長的整數(shù)倍正好契合管子,這樣就限制了琴管可以奏出的音符。原子中,波函數(shù)必須符合遠(yuǎn)離和靠近原子核的連續(xù)性和有限性條件,這也同樣限制了可能的原子態(tài)能級(jí)。

2.引自Abraham Pais ,‘Subtle Is the Lord’: The Science and the Life of Albert Einstein (Oxford University Press, 1982), p. 443.  

3.Richard Feynman, The Character of Physical Law (MIT Press, 1967), p. 129.  

4.Lawrence M. Krauss, A Universe from Nothing (Free Press, 2012), p. 138.  

5.Gino Segrè, Ordinary Geniuses (Viking, 2011).  

6.這都是些復(fù)數(shù),通常采用a+ib的形式,a,b均為實(shí)數(shù),i為-1的平方根。             

7.如此簡單,這樣一個(gè)波函數(shù)包含的信息,遠(yuǎn)遠(yuǎn)多于只是選一個(gè)正負(fù)自旋。正是這些額外信息造就了量子計(jì)算機(jī),其信息都由波函數(shù)來存儲(chǔ),性能也遠(yuǎn)超傳統(tǒng)數(shù)字電腦。

8.更精確的說,是波函數(shù)中復(fù)數(shù)絕對(duì)值的平方。對(duì)于復(fù)數(shù)a+ib,這個(gè)值是a2+b2

9.Sean Carroll在The Big Picture (Dutton, 2016)中很好地闡述了兩種論點(diǎn)的對(duì)立

10.更多數(shù)學(xué)細(xì)節(jié)可以參見Lectures on Quantum Mechanics, second edition (Cambridge University Press, 2015), 第3.7節(jié)  

11.引自 Marcelo Gleiser, The Island of Knowledge (Basic Books, 2014), p. 222.  

12.比如, Northern Lights by Philip Pullman (Scholastic, 1995), 以及早期星際迷航中的 “Mirror, Mirror”劇集 

13.Jim Holt 最近對(duì)糾纏在這些方面進(jìn)行了討論, November 10, 2016.  

14.這個(gè)方程因戈蘭·林布萊德得名, 但亦由維托里·奧戈里尼、安杰伊·科薩科夫斯基以及喬治·蘇達(dá)山獨(dú)立提出。

雷鋒網(wǎng)特約稿件,未經(jīng)授權(quán)禁止轉(zhuǎn)載。詳情見轉(zhuǎn)載須知。



本文編號(hào):1143030

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/wenshubaike/dxkc/1143030.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶98e57***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com