基于決策樹(shù)的棉花病蟲(chóng)害識(shí)別研究
[Abstract]:China is a large agricultural country with a large population. Cotton is an important agricultural crop in China, which is not only closely related to people's livelihood, but also an important strategic material, which affects the national economic construction and progress. Cotton will be affected by more than 40 kinds of diseases in the whole process of sowing and harvesting. If cotton diseases can not be identified quickly and accurately, the prevention and control of cotton will be affected. Therefore, it is very important to diagnose cotton diseases quickly. In this paper, the background and significance of the research are first expounded, and the current research situation at home and abroad is discussed. It is pointed out that the research objects in this paper are Verticillium wilt, Corner spot and Fusarium Wilt, and the importance of cotton disease identification is also explained. Secondly, the digital image processing technology is used to preprocess the cotton disease image. The related techniques of digital image processing are summarized. The median filtering method is used to eliminate the noise information of the image to reduce the influence of the noise, the weighted average method is used to grayscale the image, the maximum inter-class variance method is used to segment the image, and the improvement measures are put forward. The segmentation effect is improved. After segmentation, the image is processed by morphological method for subsequent operation. Then, based on the RGB color model and his color model, the color features of the disease image are extracted, and the average gray values of six components are extracted as the color feature parameters, and the two-dimensional Gabor transform is used to extract the texture features, and the two dimensional Gabor transform is used to extract the texture features. A total of 40 filters are used to perform spatial convolution operation. The average amplitude of each image is calculated for 40 filtered images, and the average value of 8 directions in each scale is taken as texture feature, and the final input feature is selected by statistical analysis. Finally, ID3 algorithm and C4.5 algorithm are introduced. Finally, C4.5 decision tree classification algorithm is used to identify three cotton diseases. With the help of weka data mining platform, the experimental results are remarkable and the accuracy is 94.67. In this paper, the decision tree method based on C4.5 is a new attempt to classify and identify cotton diseases. C4.5 algorithm is simple, fast, it can deal with discrete data, it is easy to extract rules, and the decision tree generated is intuitive and easy to understand.
【學(xué)位授予單位】:華北水利水電大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:S435.62;TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 吳一全;孟天亮;吳詩(shī)Zs;;圖像閾值分割方法研究進(jìn)展20年(1994—2014)[J];數(shù)據(jù)采集與處理;2015年01期
2 張建華;孔繁濤;李哲敏;吳建寨;陳威;王盛威;朱孟帥;;基于最優(yōu)二叉樹(shù)支持向量機(jī)的蜜柚葉部病害識(shí)別[J];農(nóng)業(yè)工程學(xué)報(bào);2014年19期
3 王夢(mèng)雪;;數(shù)據(jù)挖掘綜述[J];軟件導(dǎo)刊;2013年10期
4 武瑛;;形態(tài)學(xué)圖像處理的應(yīng)用[J];計(jì)算機(jī)與現(xiàn)代化;2013年05期
5 趙軍偉;侯清濤;李金屏;彭勃;;基于數(shù)學(xué)形態(tài)學(xué)和HSI顏色空間的人頭檢測(cè)[J];山東大學(xué)學(xué)報(bào)(工學(xué)版);2013年02期
6 何志勇;孫立寧;黃偉國(guó);陳立國(guó);;基于Otsu準(zhǔn)則和直線截距直方圖的閾值分割[J];光學(xué)精密工程;2012年10期
7 劉鵬;屠康;徐洪蕊;潘磊慶;劉明;;基于支持向量機(jī)的甜柿表面病害識(shí)別[J];現(xiàn)代食品科技;2011年03期
8 楊靜;張楠男;李建;劉延明;梁美紅;;決策樹(shù)算法的研究與應(yīng)用[J];計(jì)算機(jī)技術(shù)與發(fā)展;2010年02期
9 劉麗;匡綱要;;圖像紋理特征提取方法綜述[J];中國(guó)圖象圖形學(xué)報(bào);2009年04期
10 朱荷琴;;棉花主要病害研究概要[J];棉花學(xué)報(bào);2007年05期
相關(guān)碩士學(xué)位論文 前5條
1 陳含;黃瓜病害圖像自動(dòng)識(shí)別的研究[D];河北農(nóng)業(yè)大學(xué);2013年
2 周正;基于計(jì)算機(jī)視覺(jué)技術(shù)的番茄病害識(shí)別研究[D];湖南農(nóng)業(yè)大學(xué);2013年
3 郭永強(qiáng);決策樹(shù)方法在農(nóng)業(yè)智能決策中數(shù)據(jù)挖掘的應(yīng)用與實(shí)現(xiàn)[D];中國(guó)農(nóng)業(yè)科學(xué)院;2012年
4 楊修國(guó);圖像閾值分割方法研究與分析[D];華東師范大學(xué);2009年
5 鄭世茶;基于機(jī)器視覺(jué)技術(shù)的棉花病害識(shí)別[D];江蘇大學(xué);2007年
,本文編號(hào):2128528
本文鏈接:http://sikaile.net/shoufeilunwen/zaizhiyanjiusheng/2128528.html