天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于決策樹的棉花病蟲害識別研究

發(fā)布時(shí)間:2018-07-17 02:00
【摘要】:我國是一個(gè)人口眾多的農(nóng)業(yè)大國。棉花是我國重要的農(nóng)業(yè)作物,不僅與民生息息相關(guān),而且也是重要的戰(zhàn)略物資,影響著國家的經(jīng)濟(jì)建設(shè)與進(jìn)步。棉花在整個(gè)播種到收獲的過程里會遭受40多種病害侵襲,如果不能快速準(zhǔn)確地識別出棉花病害,就會影響對棉花的防治工作。因此能否快速診斷出棉花病害就顯得非常重要。本文首先闡述了研究的背景和意義,論述了國內(nèi)外研究現(xiàn)狀,指出本文研究對象為棉花黃萎病、角斑病、枯萎病三種病害,并說明了棉花病害識別研究的重要性。其次,采用數(shù)字圖像處理技術(shù)對棉花病害圖像預(yù)處理。概述了數(shù)字圖像處理的相關(guān)技術(shù)。采用中值濾波法對圖像噪聲信息進(jìn)行消除,降低這些噪聲的影響;利用加權(quán)平均的方法對圖像進(jìn)行灰度化處理;使用最大類間方差法分割圖像,并提出改進(jìn)措施,提升分割效果;經(jīng)分割處理后,利用形態(tài)學(xué)方法處理圖像以便后續(xù)操作。然后,基于RGB顏色模型和HIS顏色模型提取病害圖像的顏色特征,提取R、G、B和H、S、I共六個(gè)分量的平均灰度值作為顏色特征參數(shù);采用二維Gabor變換提取紋理特征,將圖像與5尺度8方向共40個(gè)濾波器進(jìn)行空間卷積運(yùn)算。對40個(gè)濾波圖像計(jì)算每幅圖的平均幅值,再以每個(gè)尺度上8個(gè)方向的平均值作為紋理特征,采取統(tǒng)計(jì)分析的方法選擇最終的輸入特征。最后,介紹了決策樹方法中的ID3算法和C4.5算法。對兩種算法進(jìn)行比較分析,最終采用C4.5決策樹分類算法對棉花三種病害進(jìn)行識別。借助weka數(shù)據(jù)挖掘平臺進(jìn)行實(shí)驗(yàn),實(shí)驗(yàn)結(jié)果顯著,準(zhǔn)確率達(dá)到94.67%。本文采用基于C4.5的決策樹方法對棉花病害分類識別是一種新的嘗試。C4.5算法簡單、運(yùn)算快,可以處理離散型數(shù)據(jù),易于提取規(guī)則,生成的決策樹直觀、易懂。
[Abstract]:China is a large agricultural country with a large population. Cotton is an important agricultural crop in China, which is not only closely related to people's livelihood, but also an important strategic material, which affects the national economic construction and progress. Cotton will be affected by more than 40 kinds of diseases in the whole process of sowing and harvesting. If cotton diseases can not be identified quickly and accurately, the prevention and control of cotton will be affected. Therefore, it is very important to diagnose cotton diseases quickly. In this paper, the background and significance of the research are first expounded, and the current research situation at home and abroad is discussed. It is pointed out that the research objects in this paper are Verticillium wilt, Corner spot and Fusarium Wilt, and the importance of cotton disease identification is also explained. Secondly, the digital image processing technology is used to preprocess the cotton disease image. The related techniques of digital image processing are summarized. The median filtering method is used to eliminate the noise information of the image to reduce the influence of the noise, the weighted average method is used to grayscale the image, the maximum inter-class variance method is used to segment the image, and the improvement measures are put forward. The segmentation effect is improved. After segmentation, the image is processed by morphological method for subsequent operation. Then, based on the RGB color model and his color model, the color features of the disease image are extracted, and the average gray values of six components are extracted as the color feature parameters, and the two-dimensional Gabor transform is used to extract the texture features, and the two dimensional Gabor transform is used to extract the texture features. A total of 40 filters are used to perform spatial convolution operation. The average amplitude of each image is calculated for 40 filtered images, and the average value of 8 directions in each scale is taken as texture feature, and the final input feature is selected by statistical analysis. Finally, ID3 algorithm and C4.5 algorithm are introduced. Finally, C4.5 decision tree classification algorithm is used to identify three cotton diseases. With the help of weka data mining platform, the experimental results are remarkable and the accuracy is 94.67. In this paper, the decision tree method based on C4.5 is a new attempt to classify and identify cotton diseases. C4.5 algorithm is simple, fast, it can deal with discrete data, it is easy to extract rules, and the decision tree generated is intuitive and easy to understand.
【學(xué)位授予單位】:華北水利水電大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:S435.62;TP391.41

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 吳一全;孟天亮;吳詩Zs;;圖像閾值分割方法研究進(jìn)展20年(1994—2014)[J];數(shù)據(jù)采集與處理;2015年01期

2 張建華;孔繁濤;李哲敏;吳建寨;陳威;王盛威;朱孟帥;;基于最優(yōu)二叉樹支持向量機(jī)的蜜柚葉部病害識別[J];農(nóng)業(yè)工程學(xué)報(bào);2014年19期

3 王夢雪;;數(shù)據(jù)挖掘綜述[J];軟件導(dǎo)刊;2013年10期

4 武瑛;;形態(tài)學(xué)圖像處理的應(yīng)用[J];計(jì)算機(jī)與現(xiàn)代化;2013年05期

5 趙軍偉;侯清濤;李金屏;彭勃;;基于數(shù)學(xué)形態(tài)學(xué)和HSI顏色空間的人頭檢測[J];山東大學(xué)學(xué)報(bào)(工學(xué)版);2013年02期

6 何志勇;孫立寧;黃偉國;陳立國;;基于Otsu準(zhǔn)則和直線截距直方圖的閾值分割[J];光學(xué)精密工程;2012年10期

7 劉鵬;屠康;徐洪蕊;潘磊慶;劉明;;基于支持向量機(jī)的甜柿表面病害識別[J];現(xiàn)代食品科技;2011年03期

8 楊靜;張楠男;李建;劉延明;梁美紅;;決策樹算法的研究與應(yīng)用[J];計(jì)算機(jī)技術(shù)與發(fā)展;2010年02期

9 劉麗;匡綱要;;圖像紋理特征提取方法綜述[J];中國圖象圖形學(xué)報(bào);2009年04期

10 朱荷琴;;棉花主要病害研究概要[J];棉花學(xué)報(bào);2007年05期

相關(guān)碩士學(xué)位論文 前5條

1 陳含;黃瓜病害圖像自動(dòng)識別的研究[D];河北農(nóng)業(yè)大學(xué);2013年

2 周正;基于計(jì)算機(jī)視覺技術(shù)的番茄病害識別研究[D];湖南農(nóng)業(yè)大學(xué);2013年

3 郭永強(qiáng);決策樹方法在農(nóng)業(yè)智能決策中數(shù)據(jù)挖掘的應(yīng)用與實(shí)現(xiàn)[D];中國農(nóng)業(yè)科學(xué)院;2012年

4 楊修國;圖像閾值分割方法研究與分析[D];華東師范大學(xué);2009年

5 鄭世茶;基于機(jī)器視覺技術(shù)的棉花病害識別[D];江蘇大學(xué);2007年

,

本文編號:2128528

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/zaizhiyanjiusheng/2128528.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶98f44***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com