氣助式低頻超聲霧化噴頭的設(shè)計(jì)及噴霧試驗(yàn)
本文選題:噴頭 + 超聲霧化; 參考:《江蘇大學(xué)》2017年碩士論文
【摘要】:超聲霧化噴頭比起普通壓力噴頭,能夠產(chǎn)生尺寸更加細(xì)小的霧滴,使得其在滿足農(nóng)作物生長(zhǎng)需求的同時(shí),達(dá)到了節(jié)約水資源和減少農(nóng)藥使用的目的。對(duì)于農(nóng)藥或者營(yíng)養(yǎng)液等粘度較大的液體,超聲霧化噴頭能夠更容易地霧化,因而它在農(nóng)業(yè)施肥領(lǐng)域具備得天獨(dú)厚的優(yōu)勢(shì)。為了解決現(xiàn)有的技術(shù)問(wèn)題,進(jìn)一步細(xì)化霧滴粒徑并提高噴霧的均勻性,增大噴霧角度,增強(qiáng)噴霧抗干擾能力,本文采用計(jì)算機(jī)建模與有限元分析結(jié)合的方法,設(shè)計(jì)了氣助式低頻超聲霧化噴頭,并在此基礎(chǔ)上發(fā)展了帶有渦流齒輪的設(shè)計(jì)方案及帶有金屬懸浮球的二次霧化設(shè)計(jì)方案。噴頭的基本結(jié)構(gòu)包括機(jī)械振動(dòng)結(jié)構(gòu)和流體結(jié)構(gòu),通過(guò)使用計(jì)算機(jī)軟件建模和有限元模擬仿真相結(jié)合的方法對(duì)噴頭進(jìn)行了設(shè)計(jì)驗(yàn)證。噴頭的機(jī)械振動(dòng)結(jié)構(gòu)包括超聲換能器和超聲變幅桿兩大部分,通過(guò)理論計(jì)算得出結(jié)構(gòu)中各個(gè)尺寸的具體數(shù)值,并給出了相應(yīng)的數(shù)學(xué)計(jì)算過(guò)程及計(jì)算結(jié)果。采用模態(tài)分析、諧響應(yīng)分析等CAE方法對(duì)設(shè)計(jì)的結(jié)構(gòu)進(jìn)行虛擬仿真,并將仿真結(jié)果與理論設(shè)計(jì)值相比較,驗(yàn)證設(shè)計(jì)方案,從而確定結(jié)構(gòu)各部分的最終參數(shù)。采用流體仿真的方法對(duì)噴頭的流體結(jié)構(gòu)進(jìn)行設(shè)計(jì)分析,通過(guò)觀察仿真結(jié)果中噴頭內(nèi)部氣流的運(yùn)動(dòng)情況和在噴口處的射流情況來(lái)驗(yàn)證結(jié)構(gòu)設(shè)計(jì)的可行性。根據(jù)設(shè)計(jì)參數(shù)制造出噴頭樣機(jī),并對(duì)樣機(jī)的具體特性進(jìn)行試驗(yàn)測(cè)試。對(duì)噴頭樣機(jī)的阻抗特性進(jìn)行分析,測(cè)出樣機(jī)的諧振頻率為57984Hz,與噴頭的理論設(shè)計(jì)頻率60KHz相差3.4%;得到噴頭換能器的其他關(guān)鍵參數(shù),為噴頭驅(qū)動(dòng)電源的設(shè)計(jì)提供了設(shè)計(jì)依據(jù)。對(duì)噴頭變幅桿的端面振幅及懸浮球的振幅進(jìn)行了測(cè)量,得出電源電壓為40V時(shí),噴頭變幅桿端面的平均振幅為3.30μm,懸浮球振幅為0.283mm;當(dāng)電壓增加到46V時(shí),噴頭變幅桿端面的平均振幅達(dá)到3.96μm,懸浮球振幅增加到0.301mm。由測(cè)試結(jié)果得出,噴頭樣機(jī)的工作性能滿足設(shè)計(jì)要求,且變幅桿端面振幅和懸浮球振幅正相關(guān)于驅(qū)動(dòng)電壓。為了了解噴頭的實(shí)際工作性能,利用所設(shè)計(jì)的噴頭樣機(jī)完成了噴霧試驗(yàn)。采用高清相機(jī)對(duì)噴頭噴霧角進(jìn)行了測(cè)試,通過(guò)對(duì)比試驗(yàn)可以發(fā)現(xiàn):在沒有采用渦流齒輪的情況下,噴頭噴霧角與氣壓呈現(xiàn)正相關(guān)關(guān)系;對(duì)于采用渦流齒輪的超聲霧化噴頭,當(dāng)氣流壓力較小時(shí),渦流齒輪對(duì)噴霧角的影響很小;當(dāng)氣壓增加達(dá)到0.1MPa時(shí),帶有渦流齒輪的噴頭噴霧角為36°,而不帶渦流齒輪的噴頭噴霧角僅為19°;當(dāng)氣壓達(dá)到0.4MPa時(shí),渦流齒輪幫助噴頭達(dá)到了平均66°的噴霧角,與不帶有渦流齒輪的噴頭相比,噴霧角的增加幅度達(dá)到60.9%,體現(xiàn)出渦流齒輪在增大噴霧角方面的重要作用。采用激光粒度分析儀對(duì)噴頭的霧滴粒徑進(jìn)行了試驗(yàn)研究,分析并比較了不同噴口收角、氣壓大小及懸浮球?qū)τ陟F滴粒徑的影響。由試驗(yàn)結(jié)果發(fā)現(xiàn):(1)驅(qū)動(dòng)電壓對(duì)于60KHz超聲霧化噴頭的霧化效果具有一定的影響,40V的驅(qū)動(dòng)電壓所產(chǎn)生的霧滴粒徑大于46V驅(qū)動(dòng)電壓下產(chǎn)生的霧滴粒徑。(2)噴口收角對(duì)霧滴粒徑?jīng)]有明顯的影響。(3)氣流能夠明顯地影響到噴頭所產(chǎn)生霧滴的平均粒徑及粒徑分布寬度。當(dāng)氣壓為0.05MPa時(shí),噴頭產(chǎn)生的霧滴平均粒徑減小超過(guò)10%,粒徑分布寬度也同時(shí)減小;而當(dāng)氣壓達(dá)到0.1MPa時(shí),霧滴平均粒徑減小得不明顯,甚至有可能增大,但粒徑分布寬度進(jìn)一步縮小。(4)帶有懸浮球的超聲噴頭所產(chǎn)生的霧滴粒徑要遠(yuǎn)小于沒有懸浮球的噴頭,且懸浮球能夠比氣流更明顯地減小霧滴尺寸。如何更好地將輔助氣流與懸浮球這兩種手段相結(jié)合,對(duì)于提高噴頭的霧化質(zhì)量具有重要意義。
[Abstract]:Ultrasonic atomizer can produce smaller droplets than ordinary pressure sprinklers, which make it meet the needs of crop growth and achieve the purpose of saving water resources and reducing the use of pesticides. For the liquid with large viscosity, such as pesticide or nutrient solution, the ultrasonic atomizer can be more easily atomized, so it is in agriculture. In order to solve the existing technical problems, in order to solve the existing technical problems, further refine the droplet size and improve the uniformity of the spray, increase the spray angle and enhance the anti interference ability of the spray, this paper sets up a gas assisted low frequency ultrasonic atomizer with the method of computer modeling and finite element analysis, and is based on this basis. The design scheme of the swirl gear and the two atomization design with a metal suspension ball are developed. The basic structure of the nozzle includes the mechanical vibration structure and the fluid structure. The design of the nozzle is verified by the method of combining the computer software modeling with the finite element simulation. The mechanical vibration structure of the nozzle includes the structure of the nozzle. Two parts of ultrasonic transducer and ultrasonic horn are calculated by theoretical calculation, and the corresponding mathematical calculation process and calculation result are given. The CAE method of modal analysis and harmonic response analysis is used to simulate the structure of the design, and the simulation results are compared with the theoretical design values. In order to determine the final parameters of the various parts of the structure, the fluid structure of the nozzle is designed and analyzed by the method of fluid simulation. The feasibility of the structure design is verified by observing the movement of the air flow inside the nozzle and the jet situation at the nozzle. The specific characteristics of the machine are tested. The impedance characteristics of the prototype of the nozzle are analyzed, the resonance frequency of the prototype is 57984Hz, and the difference between the theoretical design frequency 60KHz of the nozzle is 3.4%, and the other key parameters of the nozzle transducer are obtained, which provide the design basis for the design of the driving power of the nozzle. The amplitude of the floating ball is measured. When the voltage of the power supply is 40V, the average amplitude of the end face of the nozzle is 3.30 mu m and the amplitude of the suspension ball is 0.283mm. When the voltage is increased to 46V, the average amplitude of the end face of the nozzle is 3.96 M, and the amplitude of the suspension ball is increased to 0.301mm. by the test result, and the working performance of the prototype of the nozzle is satisfied. In order to understand the actual working performance of the nozzle, the spray test is completed by using the prototype of the designed nozzle. The spray angle of the nozzle is tested with a high definition camera, and the spray head can be found in the case of no swirl gear. There is a positive correlation between the spray angle and the air pressure; for the ultrasonic atomizing nozzle with swirl gear, the effect of the swirl gear on the spray angle is small when the air pressure is small. When the pressure increases to 0.1MPa, the spray angle of the nozzle with the swirl gear is 36 degrees, and the spray angle of the nozzle without the swirl gear is only 19 degrees; when the pressure reaches 0.4MPa When the swirl gear helps the nozzle to reach the spray angle of an average of 66 degrees, the increase of the spray angle is 60.9%, compared with the nozzle without the swirl gear, which reflects the important role of the swirl gear in increasing the spray angle. The particle size of the spray head is studied by the laser particle size analyzer, and the different spray is analyzed and compared. The effect of mouth angle, pressure size and suspension ball on droplet size is found. The results are as follows: (1) the driving voltage has a certain influence on the atomization effect of 60KHz ultrasonic atomizing nozzle. The droplet diameter produced by the driving voltage of 40V is larger than that of the 46V driving voltage. (2) the nozzle angle is not obvious to the droplet size. (3) the air flow can obviously affect the average particle size and the size distribution width of the droplets produced by the spray head. When the pressure is 0.05MPa, the average particle size of the spray droplets is reduced by more than 10%, and the size distribution width decreases at the same time. When the pressure reaches 0.1MPa, the average particle size of the droplet decreases not obviously, even if it is likely to increase, but the grain size is even larger. The diameter distribution width is further reduced. (4) the droplet diameter produced by the ultrasonic sprinkler with the suspension ball is much smaller than that without the suspended ball, and the suspension ball can reduce the droplet size more obviously than the air flow. How to better combine the auxiliary air and the suspended ball are important to improve the atomization quality of the nozzle. Righteousness.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:S237;TH122
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉陽(yáng)陽(yáng);何國(guó)強(qiáng);魏祥庚;石磊;;內(nèi)直外旋氣液同軸式噴嘴流量及霧化特性[J];推進(jìn)技術(shù);2016年07期
2 李井;丁艷紅;梁欣;;冪函數(shù)形復(fù)合變幅桿的設(shè)計(jì)與分析[J];機(jī)械設(shè)計(jì)與制造;2015年10期
3 李明忠;趙國(guó)瑞;;基于有限元仿真分析的高壓霧化噴嘴設(shè)計(jì)及參數(shù)優(yōu)化[J];煤炭學(xué)報(bào);2015年S1期
4 連海山;郭鐘寧;張偉;何俊峰;韓睿聰;;微細(xì)超聲工作臺(tái)的設(shè)計(jì)與微振幅測(cè)量[J];振動(dòng)與沖擊;2015年07期
5 高建民;陸岱鵬;劉昌擰;李俊一;;微型指數(shù)振子低頻超聲霧化噴頭的研制及噴霧試驗(yàn)[J];農(nóng)業(yè)工程學(xué)報(bào);2014年04期
6 宋克濤;高建民;;聚焦式低頻超聲霧化噴頭的設(shè)計(jì)及仿真[J];農(nóng)機(jī)化研究;2013年04期
7 高建民;李揚(yáng)波;;低頻超聲二次霧化噴頭聲懸浮過(guò)程仿真[J];排灌機(jī)械工程學(xué)報(bào);2011年01期
8 孟祥金;賈首星;湯智輝;周艷;沈從舉;;氣力式靜電噴頭的研究及現(xiàn)狀淺析[J];新疆農(nóng)機(jī)化;2009年03期
9 劉正;胡國(guó)輝;周哲瑋;;同軸旋擰氣流中液體射流霧化特性的實(shí)驗(yàn)研究[J];上海大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年03期
10 楊國(guó)來(lái);李秀華;周文會(huì);陳亮;;圓錐形噴嘴內(nèi)部結(jié)構(gòu)參數(shù)對(duì)射流流場(chǎng)的影響[J];液壓與氣動(dòng);2009年05期
相關(guān)會(huì)議論文 前1條
1 羅平;張鐵民;金鑫;;壓電陶瓷參數(shù)數(shù)據(jù)的轉(zhuǎn)換原理及ANSYS分析時(shí)其輸入方法[A];2007年中國(guó)農(nóng)業(yè)工程學(xué)會(huì)學(xué)術(shù)年會(huì)論文摘要集[C];2007年
相關(guān)碩士學(xué)位論文 前3條
1 王堯;液體同軸旋轉(zhuǎn)射流破碎與霧化特性的實(shí)驗(yàn)研究[D];北京交通大學(xué);2016年
2 趙子行;旋轉(zhuǎn)射流破碎霧化機(jī)理的實(shí)驗(yàn)研究[D];天津大學(xué);2010年
3 謹(jǐn)亞輝;超聲波變幅桿優(yōu)化設(shè)計(jì)及加工機(jī)理試驗(yàn)研究[D];太原理工大學(xué);2010年
,本文編號(hào):2114843
本文鏈接:http://sikaile.net/shoufeilunwen/zaizhiyanjiusheng/2114843.html