天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

氣助式低頻超聲霧化噴頭的設(shè)計及噴霧試驗

發(fā)布時間:2018-07-11 10:33

  本文選題:噴頭 + 超聲霧化; 參考:《江蘇大學(xué)》2017年碩士論文


【摘要】:超聲霧化噴頭比起普通壓力噴頭,能夠產(chǎn)生尺寸更加細(xì)小的霧滴,使得其在滿足農(nóng)作物生長需求的同時,達(dá)到了節(jié)約水資源和減少農(nóng)藥使用的目的。對于農(nóng)藥或者營養(yǎng)液等粘度較大的液體,超聲霧化噴頭能夠更容易地霧化,因而它在農(nóng)業(yè)施肥領(lǐng)域具備得天獨厚的優(yōu)勢。為了解決現(xiàn)有的技術(shù)問題,進一步細(xì)化霧滴粒徑并提高噴霧的均勻性,增大噴霧角度,增強噴霧抗干擾能力,本文采用計算機建模與有限元分析結(jié)合的方法,設(shè)計了氣助式低頻超聲霧化噴頭,并在此基礎(chǔ)上發(fā)展了帶有渦流齒輪的設(shè)計方案及帶有金屬懸浮球的二次霧化設(shè)計方案。噴頭的基本結(jié)構(gòu)包括機械振動結(jié)構(gòu)和流體結(jié)構(gòu),通過使用計算機軟件建模和有限元模擬仿真相結(jié)合的方法對噴頭進行了設(shè)計驗證。噴頭的機械振動結(jié)構(gòu)包括超聲換能器和超聲變幅桿兩大部分,通過理論計算得出結(jié)構(gòu)中各個尺寸的具體數(shù)值,并給出了相應(yīng)的數(shù)學(xué)計算過程及計算結(jié)果。采用模態(tài)分析、諧響應(yīng)分析等CAE方法對設(shè)計的結(jié)構(gòu)進行虛擬仿真,并將仿真結(jié)果與理論設(shè)計值相比較,驗證設(shè)計方案,從而確定結(jié)構(gòu)各部分的最終參數(shù)。采用流體仿真的方法對噴頭的流體結(jié)構(gòu)進行設(shè)計分析,通過觀察仿真結(jié)果中噴頭內(nèi)部氣流的運動情況和在噴口處的射流情況來驗證結(jié)構(gòu)設(shè)計的可行性。根據(jù)設(shè)計參數(shù)制造出噴頭樣機,并對樣機的具體特性進行試驗測試。對噴頭樣機的阻抗特性進行分析,測出樣機的諧振頻率為57984Hz,與噴頭的理論設(shè)計頻率60KHz相差3.4%;得到噴頭換能器的其他關(guān)鍵參數(shù),為噴頭驅(qū)動電源的設(shè)計提供了設(shè)計依據(jù)。對噴頭變幅桿的端面振幅及懸浮球的振幅進行了測量,得出電源電壓為40V時,噴頭變幅桿端面的平均振幅為3.30μm,懸浮球振幅為0.283mm;當(dāng)電壓增加到46V時,噴頭變幅桿端面的平均振幅達(dá)到3.96μm,懸浮球振幅增加到0.301mm。由測試結(jié)果得出,噴頭樣機的工作性能滿足設(shè)計要求,且變幅桿端面振幅和懸浮球振幅正相關(guān)于驅(qū)動電壓。為了了解噴頭的實際工作性能,利用所設(shè)計的噴頭樣機完成了噴霧試驗。采用高清相機對噴頭噴霧角進行了測試,通過對比試驗可以發(fā)現(xiàn):在沒有采用渦流齒輪的情況下,噴頭噴霧角與氣壓呈現(xiàn)正相關(guān)關(guān)系;對于采用渦流齒輪的超聲霧化噴頭,當(dāng)氣流壓力較小時,渦流齒輪對噴霧角的影響很小;當(dāng)氣壓增加達(dá)到0.1MPa時,帶有渦流齒輪的噴頭噴霧角為36°,而不帶渦流齒輪的噴頭噴霧角僅為19°;當(dāng)氣壓達(dá)到0.4MPa時,渦流齒輪幫助噴頭達(dá)到了平均66°的噴霧角,與不帶有渦流齒輪的噴頭相比,噴霧角的增加幅度達(dá)到60.9%,體現(xiàn)出渦流齒輪在增大噴霧角方面的重要作用。采用激光粒度分析儀對噴頭的霧滴粒徑進行了試驗研究,分析并比較了不同噴口收角、氣壓大小及懸浮球?qū)τ陟F滴粒徑的影響。由試驗結(jié)果發(fā)現(xiàn):(1)驅(qū)動電壓對于60KHz超聲霧化噴頭的霧化效果具有一定的影響,40V的驅(qū)動電壓所產(chǎn)生的霧滴粒徑大于46V驅(qū)動電壓下產(chǎn)生的霧滴粒徑。(2)噴口收角對霧滴粒徑?jīng)]有明顯的影響。(3)氣流能夠明顯地影響到噴頭所產(chǎn)生霧滴的平均粒徑及粒徑分布寬度。當(dāng)氣壓為0.05MPa時,噴頭產(chǎn)生的霧滴平均粒徑減小超過10%,粒徑分布寬度也同時減小;而當(dāng)氣壓達(dá)到0.1MPa時,霧滴平均粒徑減小得不明顯,甚至有可能增大,但粒徑分布寬度進一步縮小。(4)帶有懸浮球的超聲噴頭所產(chǎn)生的霧滴粒徑要遠(yuǎn)小于沒有懸浮球的噴頭,且懸浮球能夠比氣流更明顯地減小霧滴尺寸。如何更好地將輔助氣流與懸浮球這兩種手段相結(jié)合,對于提高噴頭的霧化質(zhì)量具有重要意義。
[Abstract]:Ultrasonic atomizer can produce smaller droplets than ordinary pressure sprinklers, which make it meet the needs of crop growth and achieve the purpose of saving water resources and reducing the use of pesticides. For the liquid with large viscosity, such as pesticide or nutrient solution, the ultrasonic atomizer can be more easily atomized, so it is in agriculture. In order to solve the existing technical problems, in order to solve the existing technical problems, further refine the droplet size and improve the uniformity of the spray, increase the spray angle and enhance the anti interference ability of the spray, this paper sets up a gas assisted low frequency ultrasonic atomizer with the method of computer modeling and finite element analysis, and is based on this basis. The design scheme of the swirl gear and the two atomization design with a metal suspension ball are developed. The basic structure of the nozzle includes the mechanical vibration structure and the fluid structure. The design of the nozzle is verified by the method of combining the computer software modeling with the finite element simulation. The mechanical vibration structure of the nozzle includes the structure of the nozzle. Two parts of ultrasonic transducer and ultrasonic horn are calculated by theoretical calculation, and the corresponding mathematical calculation process and calculation result are given. The CAE method of modal analysis and harmonic response analysis is used to simulate the structure of the design, and the simulation results are compared with the theoretical design values. In order to determine the final parameters of the various parts of the structure, the fluid structure of the nozzle is designed and analyzed by the method of fluid simulation. The feasibility of the structure design is verified by observing the movement of the air flow inside the nozzle and the jet situation at the nozzle. The specific characteristics of the machine are tested. The impedance characteristics of the prototype of the nozzle are analyzed, the resonance frequency of the prototype is 57984Hz, and the difference between the theoretical design frequency 60KHz of the nozzle is 3.4%, and the other key parameters of the nozzle transducer are obtained, which provide the design basis for the design of the driving power of the nozzle. The amplitude of the floating ball is measured. When the voltage of the power supply is 40V, the average amplitude of the end face of the nozzle is 3.30 mu m and the amplitude of the suspension ball is 0.283mm. When the voltage is increased to 46V, the average amplitude of the end face of the nozzle is 3.96 M, and the amplitude of the suspension ball is increased to 0.301mm. by the test result, and the working performance of the prototype of the nozzle is satisfied. In order to understand the actual working performance of the nozzle, the spray test is completed by using the prototype of the designed nozzle. The spray angle of the nozzle is tested with a high definition camera, and the spray head can be found in the case of no swirl gear. There is a positive correlation between the spray angle and the air pressure; for the ultrasonic atomizing nozzle with swirl gear, the effect of the swirl gear on the spray angle is small when the air pressure is small. When the pressure increases to 0.1MPa, the spray angle of the nozzle with the swirl gear is 36 degrees, and the spray angle of the nozzle without the swirl gear is only 19 degrees; when the pressure reaches 0.4MPa When the swirl gear helps the nozzle to reach the spray angle of an average of 66 degrees, the increase of the spray angle is 60.9%, compared with the nozzle without the swirl gear, which reflects the important role of the swirl gear in increasing the spray angle. The particle size of the spray head is studied by the laser particle size analyzer, and the different spray is analyzed and compared. The effect of mouth angle, pressure size and suspension ball on droplet size is found. The results are as follows: (1) the driving voltage has a certain influence on the atomization effect of 60KHz ultrasonic atomizing nozzle. The droplet diameter produced by the driving voltage of 40V is larger than that of the 46V driving voltage. (2) the nozzle angle is not obvious to the droplet size. (3) the air flow can obviously affect the average particle size and the size distribution width of the droplets produced by the spray head. When the pressure is 0.05MPa, the average particle size of the spray droplets is reduced by more than 10%, and the size distribution width decreases at the same time. When the pressure reaches 0.1MPa, the average particle size of the droplet decreases not obviously, even if it is likely to increase, but the grain size is even larger. The diameter distribution width is further reduced. (4) the droplet diameter produced by the ultrasonic sprinkler with the suspension ball is much smaller than that without the suspended ball, and the suspension ball can reduce the droplet size more obviously than the air flow. How to better combine the auxiliary air and the suspended ball are important to improve the atomization quality of the nozzle. Righteousness.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:S237;TH122

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 劉陽陽;何國強;魏祥庚;石磊;;內(nèi)直外旋氣液同軸式噴嘴流量及霧化特性[J];推進技術(shù);2016年07期

2 李井;丁艷紅;梁欣;;冪函數(shù)形復(fù)合變幅桿的設(shè)計與分析[J];機械設(shè)計與制造;2015年10期

3 李明忠;趙國瑞;;基于有限元仿真分析的高壓霧化噴嘴設(shè)計及參數(shù)優(yōu)化[J];煤炭學(xué)報;2015年S1期

4 連海山;郭鐘寧;張偉;何俊峰;韓睿聰;;微細(xì)超聲工作臺的設(shè)計與微振幅測量[J];振動與沖擊;2015年07期

5 高建民;陸岱鵬;劉昌擰;李俊一;;微型指數(shù)振子低頻超聲霧化噴頭的研制及噴霧試驗[J];農(nóng)業(yè)工程學(xué)報;2014年04期

6 宋克濤;高建民;;聚焦式低頻超聲霧化噴頭的設(shè)計及仿真[J];農(nóng)機化研究;2013年04期

7 高建民;李揚波;;低頻超聲二次霧化噴頭聲懸浮過程仿真[J];排灌機械工程學(xué)報;2011年01期

8 孟祥金;賈首星;湯智輝;周艷;沈從舉;;氣力式靜電噴頭的研究及現(xiàn)狀淺析[J];新疆農(nóng)機化;2009年03期

9 劉正;胡國輝;周哲瑋;;同軸旋擰氣流中液體射流霧化特性的實驗研究[J];上海大學(xué)學(xué)報(自然科學(xué)版);2009年03期

10 楊國來;李秀華;周文會;陳亮;;圓錐形噴嘴內(nèi)部結(jié)構(gòu)參數(shù)對射流流場的影響[J];液壓與氣動;2009年05期

相關(guān)會議論文 前1條

1 羅平;張鐵民;金鑫;;壓電陶瓷參數(shù)數(shù)據(jù)的轉(zhuǎn)換原理及ANSYS分析時其輸入方法[A];2007年中國農(nóng)業(yè)工程學(xué)會學(xué)術(shù)年會論文摘要集[C];2007年

相關(guān)碩士學(xué)位論文 前3條

1 王堯;液體同軸旋轉(zhuǎn)射流破碎與霧化特性的實驗研究[D];北京交通大學(xué);2016年

2 趙子行;旋轉(zhuǎn)射流破碎霧化機理的實驗研究[D];天津大學(xué);2010年

3 謹(jǐn)亞輝;超聲波變幅桿優(yōu)化設(shè)計及加工機理試驗研究[D];太原理工大學(xué);2010年



本文編號:2114842

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/zaizhiyanjiusheng/2114842.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶8613c***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com