球孢白僵菌與印楝素對(duì)溫室白粉虱實(shí)驗(yàn)種群影響研究
本文選題:溫室白粉虱 + 球孢白僵菌 ; 參考:《西南大學(xué)》2017年碩士論文
【摘要】:溫室白粉虱(Trialeurodes vaporariorum Westwood)是一種世界性農(nóng)業(yè)害蟲,具有分布廣、寄主多的特點(diǎn),目前生產(chǎn)上主要依靠使用化學(xué)農(nóng)藥控制其發(fā)生與危害。由于化學(xué)藥劑的大量使用,以及溫室白粉虱發(fā)育期短、繁殖力強(qiáng)的生態(tài)對(duì)策,導(dǎo)致其抗藥性急劇上升。應(yīng)用生物防治手段不但可以延緩害蟲抗性增長(zhǎng),還具有環(huán)境友好、持續(xù)控制等優(yōu)勢(shì),合理開發(fā)使用生防技術(shù)越來受到關(guān)注。因此,本研究開展生防真菌球孢白僵菌(Beauveria bassiana)和印楝素對(duì)溫室白粉虱的致病力測(cè)定,評(píng)價(jià)兩者混配對(duì)其發(fā)育、繁殖與存活的影響,并利用掃描電鏡技術(shù)比較分析了球孢白僵菌對(duì)單獨(dú)使用和混配使用下對(duì)溫室白粉虱若蟲的侵染過程。主要研究?jī)?nèi)容如下:1.球孢白僵菌株系篩選及其對(duì)溫室白粉虱發(fā)育與存活的影響測(cè)定了8株供試球孢白僵菌株系對(duì)溫室白粉虱3齡若蟲致病效果,在初步篩選過程中,所有株系均表現(xiàn)出一定的致病力,在孢子懸浮液濃度為1×107個(gè)/mL時(shí),校正死亡率為27.0%~70.6%,僵蟲率為27.0%~67.5%,同時(shí)在上述濃度下進(jìn)行時(shí)間-死亡率線性擬合測(cè)得致死中時(shí)間為4.9~7.9 d,Bb252株系的校正死亡率、僵蟲率顯著高于其他株系,因此判定Bb252是對(duì)溫室白粉虱具有潛在控制作用的優(yōu)良株系。進(jìn)一步測(cè)定Bb252株系對(duì)溫室白粉虱的致病力效果,測(cè)得LC50值為3.99×106個(gè)/mL。球孢白僵菌Bb252株系對(duì)溫室白粉虱的潛在防控結(jié)果表明,1×104、1×105、1×106、1×107、1×108個(gè)/mL濃度Bb252孢子懸浮液處理溫室白粉虱24 h后,各濃度處理對(duì)其取食、產(chǎn)卵行為均有顯著影響,且隨著濃度的升高而增強(qiáng),在1×108個(gè)/mL濃度下,球孢白僵菌Bb252株系對(duì)溫室白粉虱的取食忌避率、拒食率、產(chǎn)卵忌避率最高,分別達(dá)到78.8%、80.9%、78.7%。溫室白粉虱發(fā)育歷期隨著球孢白僵菌Bb252濃度增加而逐漸縮短,在1×108個(gè)/mL濃度下,發(fā)育歷期最短,為20.73±0.30 d,顯著低于對(duì)照處理下的23.48±0.23 d。利用Kaplan-Meier法分析結(jié)果表明在濃度為1×108個(gè)/mL作用下,溫室白粉虱累積存活率在22 d達(dá)到最低值0.482。2.印楝素對(duì)溫室白粉虱存活與發(fā)育的影響測(cè)定不同濃度印楝素對(duì)溫室白粉虱3齡若蟲的毒力作用,結(jié)果表明印楝素對(duì)溫室白粉虱3齡若蟲的LC50為5.76 mg/L。通過忌避作用、發(fā)育歷期影響以及生存分析,印楝素在500 mg/L、50 mg/L、5 mg/L、1 mg/L、0.5 mg/L等5種濃度處理24 h后,溫室白粉虱拒食率為17.81%~60.11%,產(chǎn)卵忌避率為14.58%~69.64%,且隨著濃度的增高忌避作用越明顯。經(jīng)印楝素處理后,煙草葉片不僅可以降低溫室白粉虱種群的取食率,取食該葉片后還可導(dǎo)致粉虱發(fā)育歷期延長(zhǎng),當(dāng)濃度達(dá)到50mg/L時(shí),其發(fā)育歷期最長(zhǎng)為24.95±0.83 d。溫室白粉虱在50 mg/L濃度印楝素處理下累計(jì)存活率在25 d達(dá)到最低值0.432。因此,印楝素對(duì)粉虱種群控制作用除直接的致死效應(yīng)外還具有趨避、拒食以及干擾其生長(zhǎng)發(fā)育等潛在控制作用。3.球孢白僵菌與印楝素混配使用對(duì)溫室白粉虱防控效果分析通過球孢白僵菌與印楝素二者的相容性混配試驗(yàn),利用不同濃度印楝素配制成含毒培養(yǎng)基并接種白僵菌菌餅,結(jié)果表明,印楝素濃度在500 mg/L時(shí),對(duì)球孢白僵菌的抑制率達(dá)到65.3%,當(dāng)印楝素濃度低于50 mg/L,對(duì)其抑制率均小于30%,表明兩者相容較好。將印楝素與球孢白僵菌分別以LC50濃度按9∶1、4∶1、1∶1、1∶4、1∶9的比例混配,在1∶1、1∶4比例混配后表現(xiàn)為增效作用,其中1∶4比例下的共毒系數(shù)最高為294.23。通過掃描電鏡觀察單劑與最優(yōu)混劑中球孢白僵菌孢子萌發(fā)及侵染過程,發(fā)現(xiàn)白僵菌孢子易在寄主表皮的凹槽、褶皺處附著、萌發(fā),在光滑的背板處則極易脫落。2種劑型對(duì)孢子萌發(fā)影響差別不大,在48 h內(nèi)均能夠陸續(xù)萌發(fā),只有在菌絲營(yíng)養(yǎng)生長(zhǎng)后期,形成網(wǎng)狀結(jié)構(gòu)包圍寄主時(shí)(96 h~120 h),混劑菌絲的網(wǎng)狀結(jié)構(gòu)較單劑的稀疏。
[Abstract]:The greenhouse whitefly (Trialeurodes vaporariorum Westwood) is a worldwide agricultural pest. It has a wide distribution and many host characteristics. At present, the production is mainly controlled by chemical pesticides to control its occurrence and harm. Because of the large use of chemical chemicals and the short development period of the greenhouse whitefly, the ecological countermeasures of strong fecundity have led to its resistance to drug. The use of biological control means not only can delay the growth of resistance to insect pests, but also have the advantages of environmental friendly and continuous control. The rational development and use of biological control technology have attracted more and more attention. Therefore, this study carried out the determination of the pathogenicity of Beauveria bassiana and azadirachtin on the greenhouse whitefly, and evaluated two The influence of the people on their development, reproduction and survival, and using scanning electron microscopy to compare and analyze the infection process of Beauveria bassiana to the nymphs of the greenhouse whitefly. The main contents are as follows: 1. screening of Beauveria bassiana and its effects on the development and survival of white Whitefly in greenhouse, 8 test In the preliminary screening process, the strains of Beauveria bassiana had a certain pathogenicity in the preliminary screening process. When the concentration of the spore suspension was 1 x 107 /mL, the correction mortality was 27.0%~70.6% and the rate of ossified insect was 27.0%~67.5%. At the same time, the time mortality linear fitting under the above concentration was used to determine the death rate. The median time was 4.9~7.9 D and the correction mortality of Bb252 strain was significantly higher than that of other strains. Therefore, it was determined that Bb252 was a good plant line with potential control effect on the greenhouse whitefly. The pathogenicity effect of Bb252 strain on greenhouse whitefly was further measured, and the value of LC50 was 3.99 * 106 /mL. of Beauveria bassiana to greenhouse white. The potential control results of whitefly showed that after 1 x 104,1 * 105,1 x 106,1 x 107,1 x 108 /mL concentration Bb252 spores suspension solution treatment of greenhouse white meal louse 24 h, each concentration treatment had a significant effect on its feeding and spawning behavior, and increased with the increase of concentration. At the concentration of 1 x 108 /mL, the Bb252 strain of Beauveria bassiana was taken to the greenhouse whitefly. Avoidance rate, antifeedant rate and oviposition repellent rate were the highest, reaching 78.8%, 80.9% respectively. The development period of 78.7%. greenhouse whitefly gradually shortened with the increase of Bb252 concentration of Beauveria bassiana. Under 1 * 108 /mL concentrations, the development duration was 20.73 + 0.30 D, which was significantly lower than that of the control treated by 23.48 + 0.23 D. using Kaplan-Meier analysis results. Under the action of 1 x 108 /mL, the cumulative survival rate of the greenhouse whitefly reached the lowest value of 22 D. The effect of azadirachtin on the survival and development of greenhouse whitefly was determined by 0.482.2.. The toxicity of azadirachtin to 3 nymphs of greenhouse whitefly was determined by different concentrations. The results showed that the LC50 of azadirachtin for the 3 age nymphs of the greenhouse whitefly was 5.76 mg/L.. After 500 mg/L, 50 mg/L, 5 mg/L, 1 mg/L, 0.5 mg/L, the antifeedant rate of the greenhouse whitefly was 17.81%~60.11%, the oviposition avoidance rate was 14.58%~69.64%, and the deterrent effect was more obvious with the increase of concentration. After treatment with azadirachtin, the tobacco leaves could not only reduce the low temperature. The feeding rate of the Bemisia tabaci population could lead to the prolongation of the development period of the whitefly. When the concentration reached 50mg/L, the longest development period was 24.95 + 0.83 D., the cumulative survival rate of the white powdery Whitefly in the 50 mg/L concentration of azadirachtin reached a minimum of 25 D, so the control effect of azadirachtin to the whitefly population was directly caused by the Azadirachtin. The effect of the death effect also has the potential control effect of avoidance, antifeedant and interference with the growth and development of.3.. The control effect of the mixed use of Beauveria bassiana and azadirachtin on the control of greenhouse whitefly by miscibility test of assius bassiana and azadirachtin two, using different concentrations of azadirachtin into a poisonous medium and inoculated with Beauveria bassiana The results showed that the inhibition rate of azadirachtin at 500 mg/L was 65.3%. When the concentration of azadirachtin was lower than 50 mg/L, the inhibition rate of azadirachtin was less than 30%, indicating that both of them were compatible. The mixture of azadirachtin and Beauveria bassiana was mixed at the concentration of 9: 1,4: 1,1: 1,1: 4,1: 9, respectively, after mixing with 1: 1,1: 4. The CO toxicity of 1 to 4 ratio was the highest of 294.23.. The spore germination and infection process of Beauveria bassiana was observed by scanning electron microscope. It was found that the spores of Beauveria bassiana were easy to be in the grooves of the host epidermis, the folds were attached and germinated, and the spores were easily sprouting out of the.2 forms at the smooth back plate. The difference was not significant, and it could germinate in succession in 48 h. Only in the late growth of the mycelium, the reticular structure surrounded the host (96 h~120 h), and the reticular structure of the mixed mycelium was thinning than that of the single agent.
【學(xué)位授予單位】:西南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:S433
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 崔健;張淑霞;劉素芹;宋云云;江志訓(xùn);;黃板誘殺溫室白粉虱在黃瓜上的研究[J];中國(guó)園藝文摘;2016年08期
2 張慧;吳圣勇;李娟;張璐璐;張林雅;雷仲仁;;不同培養(yǎng)基繼代培養(yǎng)球孢白僵菌對(duì)西花薊馬毒力和產(chǎn)孢量的影響[J];中國(guó)農(nóng)業(yè)科學(xué);2016年15期
3 于永;陳嵐;胡作棟;;溫室白粉虱在蔬菜田的發(fā)生規(guī)律和防治技術(shù)[J];現(xiàn)代園藝;2016年13期
4 王吉銳;馬德英;王惠卿;杜予州;;中國(guó)新疆地區(qū)粉虱種類(半翅目:粉虱科)記述[J];環(huán)境昆蟲學(xué)報(bào);2016年03期
5 彭昌家;白體坤;丁攀;馮禮斌;朱成;楊宇衡;劉怡欣;陳丹;;生物農(nóng)藥和生化復(fù)配制劑防治設(shè)施秋番茄溫室白粉虱效果研究[J];農(nóng)學(xué)學(xué)報(bào);2016年05期
6 榮海濤;;溫室白粉虱防治現(xiàn)狀及防治技術(shù)[J];吉林農(nóng)業(yè);2016年09期
7 張龍娃;康克;劉玉軍;張晶;孫龍;詹成;黃長(zhǎng)春;蔣麗雅;葉開云;丁德貴;;美國(guó)白蛾高毒力球孢白僵菌菌株篩選[J];昆蟲學(xué)報(bào);2016年01期
8 肖永俠;;溫室白粉虱的危害及防治對(duì)策[J];河南農(nóng)業(yè);2016年02期
9 白鵬華;白義川;馮友仁;劉寶生;;白僵菌不同菌株對(duì)美國(guó)白蛾幼蟲的致病力及田間應(yīng)用研究[J];天津師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年03期
10 袁盛勇;孔瓊;沈登榮;張宏瑞;陳斌;薛春麗;張紅艷;丁麗;;球孢白僵菌對(duì)扶桑綿粉蚧致病力的測(cè)定[J];華中農(nóng)業(yè)大學(xué)學(xué)報(bào);2015年04期
相關(guān)博士學(xué)位論文 前1條
1 施衛(wèi)兵;生防真菌對(duì)葉螨類植物害螨的微生物防治研究[D];浙江大學(xué);2007年
相關(guān)碩士學(xué)位論文 前6條
1 王文龍;華東地區(qū)Q型煙粉虱對(duì)新煙堿類殺蟲劑的抗性監(jiān)測(cè)及其靶標(biāo)基因克隆[D];揚(yáng)州大學(xué);2015年
2 姜榮良;蠟蚧輪枝菌抗逆菌株的篩選及殺蟲活性的測(cè)定[D];福建農(nóng)林大學(xué);2010年
3 楊世武;植綏螨[Typhlodromips (Amblyseius)swirskii(Athias-Henriot)(Acarina:Phytoseiidae)]規(guī)模繁殖研究[D];華中農(nóng)業(yè)大學(xué);2009年
4 王云濱;甜菜夜蛾白僵菌優(yōu)良菌株的篩選及發(fā)酵技術(shù)的研究[D];河北農(nóng)業(yè)大學(xué);2007年
5 張世澤;麗蚜小蜂Encarsia formosa生態(tài)學(xué)及其對(duì)煙粉虱Bemisia tabaci控制效能的研究[D];西北農(nóng)林科技大學(xué);2003年
6 張麗靖;球孢白僵菌孢子粉生產(chǎn)、制劑和貯存技術(shù)的改進(jìn)及其淀粉酶特性測(cè)定[D];浙江大學(xué);2003年
,本文編號(hào):2077072
本文鏈接:http://sikaile.net/shoufeilunwen/zaizhiyanjiusheng/2077072.html