全自動水草清理作業(yè)船視覺輔助導(dǎo)航技術(shù)研究
本文選題:水草清理船 + 機(jī)器視覺。 參考:《江蘇大學(xué)》2017年碩士論文
【摘要】:我國是河蟹等水產(chǎn)品消費(fèi)的大國,具有巨大的養(yǎng)殖面積和消費(fèi)市場,但是與發(fā)達(dá)國家相比,我國河蟹養(yǎng)殖行業(yè)存在生產(chǎn)方式落后、成本高、規(guī)模小和工業(yè)化水平較低的問題。河蟹養(yǎng)殖的水草清理和維護(hù)工作還都是依靠人工作業(yè)完成,有必要研發(fā)出一種全自動化的水草清理船來降低農(nóng)戶的勞動強(qiáng)度和養(yǎng)殖成本。本文設(shè)計(jì)了一個(gè)基于GPS定位系統(tǒng)的視覺輔助導(dǎo)航系統(tǒng),旨在實(shí)現(xiàn)全自動作業(yè)船的自動導(dǎo)航功能。本文主要研究工作如下:一、使用明輪動力平臺作為實(shí)驗(yàn)平臺,搭建基于GPS定位的視覺輔助導(dǎo)航系統(tǒng),并介紹視覺輔助導(dǎo)航系統(tǒng)的設(shè)計(jì)思路和硬件結(jié)構(gòu)。二、采用數(shù)字圖像處理技術(shù)對采集到的水面水草圖像進(jìn)行分割。首先進(jìn)行圖像的預(yù)處理操作,包括降噪濾波和灰度化處理,為后續(xù)基于閾值的圖像分割處理奠定基礎(chǔ),然后完成對目標(biāo)(水草)和背景(水面)的分割工作,通過形態(tài)學(xué)運(yùn)算和有效區(qū)域保留的方法得到導(dǎo)航有效區(qū)域。三、根據(jù)得到的導(dǎo)航有效區(qū)域提取出一條導(dǎo)航基準(zhǔn)線。首先比較分析最小二乘直線擬合和霍夫變換兩種直線檢測法的工作效果,然后根據(jù)本課題的應(yīng)用背景提出一種改進(jìn)的直線檢測算法提取出導(dǎo)航基準(zhǔn)線,作為作業(yè)船的導(dǎo)航路徑。四、采用張氏標(biāo)定法對CCD工業(yè)相機(jī)進(jìn)行標(biāo)定,得到其內(nèi)外參數(shù),然后根據(jù)攝像機(jī)成像模型與相機(jī)的內(nèi)外參數(shù)將圖像坐標(biāo)系中的導(dǎo)航基準(zhǔn)線轉(zhuǎn)換到世界坐標(biāo)系中,并計(jì)算出航向角。五、使用卡爾曼濾波算法將視覺導(dǎo)航模塊和GPS定位模塊的導(dǎo)航參數(shù)進(jìn)行信息融合,建立組合導(dǎo)航模型,以提高自動導(dǎo)航系統(tǒng)的定位精度。通過導(dǎo)航實(shí)驗(yàn)可以得到,信息融合后實(shí)驗(yàn)數(shù)據(jù)的橫向極差、平均偏差和標(biāo)準(zhǔn)誤差分別下降了42%、65%和67%。
[Abstract]:China is a big country in the consumption of aquatic products such as crabs, and has a huge breeding area and consumption market. However, compared with the developed countries, the production mode is backward, the cost is high, the scale is small and the industrialization level is low in our country. In order to reduce the labor intensity and the cost of farming, it is necessary to develop a kind of fully automatic cleaning boat of water and grass to reduce the labor intensity and the cost of farming. A visual aided navigation system based on GPS positioning system is designed in this paper. The main research work of this paper is as follows: firstly, the visual navigation system based on GPS positioning is built using the power platform of the open wheel as the experimental platform, and the design idea and hardware structure of the visual aided navigation system are introduced. Secondly, the digital image processing technology is used to segment the collected surface water grass image. First, the image preprocessing operations, including noise reduction filtering and grayscale processing, are carried out to lay the foundation for the subsequent threshold-based image segmentation, and then the target (grass) and background (water surface) segmentation is completed. The navigation effective region is obtained by morphological operation and effective region reservation. Thirdly, a navigation datum is extracted according to the effective navigation area. This paper first compares and analyzes the results of the two methods of least-square line fitting and Hough transform, and then proposes an improved line detection algorithm to extract the navigation datum, which can be used as the navigation path of the operation ship according to the application background of this subject. Fourthly, the CCD industrial camera is calibrated by Zhang's calibration method, and its internal and external parameters are obtained, then the navigation datum in the image coordinate system is converted to the world coordinate system according to the camera imaging model and the camera's internal and external parameters. The heading angle is calculated. Fifthly, the navigation parameters of visual navigation module and GPS positioning module are fused by Kalman filter algorithm, and the integrated navigation model is established to improve the positioning accuracy of automatic navigation system. The results of navigation experiments show that the transverse range, average deviation and standard error of the experimental data after information fusion are decreased by 42% and 67%, respectively.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:S969;TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 欒祿祥;;室內(nèi)移動機(jī)器人機(jī)器視覺定位系統(tǒng)的設(shè)計(jì)[J];自動化儀表;2017年02期
2 葉建生;韓興鵬;陳小江;魏榮成;楊海春;;3種水草種植模式對河蟹養(yǎng)殖生產(chǎn)的影響[J];江蘇農(nóng)業(yè)科學(xué);2016年12期
3 姜楓;顧慶;郝慧珍;李娜;郭延文;陳道蓄;;基于內(nèi)容的圖像分割方法綜述[J];軟件學(xué)報(bào);2017年01期
4 段志剛;李勇;王恩德;田建東;唐延?xùn)|;;基于光照不變圖像的陰影圖像道路及導(dǎo)航線提取算法[J];光學(xué)學(xué)報(bào);2016年12期
5 徐增洪;劉國鋒;水燕;周鑫;;人工栽培水草對池塘養(yǎng)殖生態(tài)環(huán)境和蝦蟹生長的影響[J];江蘇農(nóng)業(yè)科學(xué);2016年06期
6 翟瑞芳;方益杭;林承達(dá);彭輝;劉善梅;羅俊;;基于高斯HI顏色算法的大田油菜圖像分割[J];農(nóng)業(yè)工程學(xué)報(bào);2016年08期
7 韓永華;汪亞明;孫麒;趙勻;;基于小波變換及Otsu分割的農(nóng)田作物行提取[J];電子與信息學(xué)報(bào);2016年01期
8 洪劍青;趙德安;孫月平;張軍;劉星橋;;水產(chǎn)養(yǎng)殖無人導(dǎo)航明輪船運(yùn)動仿真與試驗(yàn)[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2016年03期
9 李林;魏新華;朱文靜;李晉陽;;寬幅施藥機(jī)械機(jī)器視覺輔助導(dǎo)航系統(tǒng)研究[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2015年09期
10 陳蘇;陳國興;韓曉健;戚承志;杜修力;;基于計(jì)算機(jī)視覺的位移測試方法研究與實(shí)現(xiàn)[J];振動與沖擊;2015年18期
相關(guān)碩士學(xué)位論文 前1條
1 湯有勝;基于嵌入式視覺的自動導(dǎo)航系統(tǒng)研究[D];湖北工業(yè)大學(xué);2016年
,本文編號:1986512
本文鏈接:http://sikaile.net/shoufeilunwen/zaizhiyanjiusheng/1986512.html