光質(zhì)對(duì)壇紫菜生長(zhǎng)和生理學(xué)特性的影響及壇紫菜絲狀體藍(lán)光效應(yīng)的轉(zhuǎn)錄組分析
本文選題:壇紫菜 + 絲狀體 ; 參考:《上海海洋大學(xué)》2017年碩士論文
【摘要】:壇紫菜(Pyropia haitanensis)隸屬屬紅藻門(mén)(Rhodophyta),是我國(guó)特有的暖溫帶紫菜栽培品種,主要養(yǎng)殖在浙江、福建和廣東等沿海地區(qū)。壇紫菜具有豐富的營(yíng)養(yǎng)價(jià)值備受?chē)?guó)人喜愛(ài),其年產(chǎn)量占全國(guó)紫菜產(chǎn)量的75%以上。壇紫菜的生活史由宏觀的葉狀體世代和微觀的絲狀體世代構(gòu)成,其中我們食用的部分是壇紫菜的葉狀體。葉狀體是由絲狀體附殼后生長(zhǎng)發(fā)育形成,絲狀體可以“農(nóng)業(yè)種子”的形式在實(shí)驗(yàn)室長(zhǎng)期保存。光是光合作用進(jìn)行的原動(dòng)力,光質(zhì)是光的重要屬性,海洋水體水深和透明度的變化會(huì)使光質(zhì)發(fā)生變化,光質(zhì)對(duì)藻類的生長(zhǎng)發(fā)育、形態(tài)和光合作用等具有調(diào)控作用。本實(shí)驗(yàn)以壇紫菜絲狀體和葉狀體作為實(shí)驗(yàn)材料,研究光質(zhì)對(duì)壇紫菜絲狀體和葉狀體生長(zhǎng)和生理的影響,并從分子水平探究光質(zhì)對(duì)壇紫菜轉(zhuǎn)錄組的影響。主要結(jié)果如下:1.不同光質(zhì)LED光源對(duì)壇紫菜自由絲狀體生長(zhǎng)和生理學(xué)特性的影響比較研究了不同光質(zhì)(綠光510~550nm、藍(lán)光455~475nm、紅光580~630nm、白光400~760nm)的發(fā)光二極管(LED)對(duì)無(wú)性增殖過(guò)程中自由絲狀體生長(zhǎng)及生理特性的影響。研究表明,藍(lán)光能提高自由絲狀體的生長(zhǎng)速率,藍(lán)光下藻體增重分別是白光、綠光、紅光下藻體增重的1.10倍、1.82倍和2.17倍(P0.05)。藍(lán)光處理有助于葉綠素a和類胡蘿卜素的積累,兩者含量分別較白光、綠光和紅光處理提高13.77%、47.69%、63.42%和8.87%、87.07%、97.73%(P0.05)。藍(lán)光和白光均有利于藻紅蛋白合成,綠光和紅光降低藻紅蛋白合成,但四種光質(zhì)的LED光源對(duì)藻藍(lán)蛋白合成無(wú)顯著性差異(P0.05)。藍(lán)光能顯著提高碳酸酐酶(CA)活性,較白光下CA活性增加11.36%(P0.05)。藍(lán)光和綠光顯著提高1,5-二磷酸核酮糖羧化酶/加氧酶(RubisCO)活性,分別較白光下RubisCO活性增加28.17%和61.21%(P0.05)。紅光和綠光下藻體在培養(yǎng)后期的色澤暗淡,星狀色素體少,部分藻體細(xì)胞內(nèi)容物溢出,呈中空狀態(tài);而藍(lán)光和白光下藻體健康正常,色澤鮮紅。因此,在今后的壇紫菜自由絲狀體無(wú)性擴(kuò)繁過(guò)程中可以適當(dāng)增加LED光源的藍(lán)光組分,減少紅光和綠光組分。2.藍(lán)光和黑暗條件下壇紫菜自由絲狀體的轉(zhuǎn)錄組基因差異表達(dá)分析采用高通量轉(zhuǎn)錄組測(cè)序技術(shù),建立壇紫菜絲狀體轉(zhuǎn)錄組文庫(kù),分析藍(lán)光下壇紫菜絲狀體轉(zhuǎn)錄譜基因表達(dá)變化。本次測(cè)序共獲得unigenes 124527條,平均長(zhǎng)度585bp,GC含量為59.96%。所有GO注釋中生物學(xué)過(guò)程中的注釋unigenes數(shù)量最多,共24535條,單個(gè)條目中催化作用具有的unigenes最多,達(dá)8497條。eggNOG功能分析中一般功能基因占總unigenes比例為4.09%,翻譯后的修飾、蛋白質(zhì)折疊和分子伴侶(3.42%)和信號(hào)傳導(dǎo)機(jī)制(2.90%)次之,包含unigenes數(shù)目最少的三個(gè)功能單元為核酸結(jié)構(gòu)(0.11%)、細(xì)胞外結(jié)構(gòu)(0.05%)和細(xì)胞運(yùn)動(dòng)(0.02%)。KEGG分析中注釋unigenes最多的是代謝程序和遺傳信息程序。本文通過(guò)比對(duì)分析篩選出5936條差異unigenes,其中1457條上調(diào)基因和4479條下調(diào)基因。差異表達(dá)的unigenes在代謝、氨基酸合成、乙醛酸和二羧酸循環(huán)等通路顯著富集,表明這些unigenes主要參與了壇紫菜絲狀體的基礎(chǔ)代謝、蛋白質(zhì)合成、呼吸作用和酶活性條件等。3.不同光質(zhì)LED光源對(duì)壇紫菜葉狀生長(zhǎng)發(fā)育的影響比較研究了不同光質(zhì)(綠光510~550nm、藍(lán)光455~475nm、紅光580~630n m、白光400~760nm)的發(fā)光二極管(LED)對(duì)壇紫菜葉狀體生長(zhǎng)及生理特性的影響。結(jié)果表明:四種光質(zhì)培養(yǎng)下白光生長(zhǎng)最好,與其它實(shí)驗(yàn)組間差異顯著,白光下最高特定生長(zhǎng)率超出藍(lán)光84.54%,綠光90.28%(P0.05)。培養(yǎng)25d后白光下葉狀體長(zhǎng)度最高可達(dá)51.55cm,平均長(zhǎng)度是藍(lán)光、綠光紅光增長(zhǎng)長(zhǎng)度的2.66、3.86和2.42倍(P0.05),三種單一光色中紅光生長(zhǎng)最快,綠光最慢。葉狀體形態(tài)觀察和顯微觀察發(fā)現(xiàn)不同光質(zhì)下壇紫菜葉狀體的色澤和細(xì)胞發(fā)生變化,藍(lán)光下藻體深紅,細(xì)胞排列緊密,紅光和綠光下藻體色澤減淡。在對(duì)葉狀體進(jìn)行色素蛋白檢測(cè)發(fā)現(xiàn)不同光質(zhì)下色素蛋白含量有明顯差異,其中藍(lán)光下葉綠素a和類胡蘿素含量最高,紅光下最低(P0.05),綠光下藻體葉綠素含量與對(duì)照組無(wú)明顯差異(P0.05)。藍(lán)光下藻體藻膽蛋白含量顯著高于其他實(shí)驗(yàn)組(P0.05),其中藍(lán)光下藻紅蛋白的含量已經(jīng)達(dá)到對(duì)照組白光下1.94倍,綠光和紅光下藻紅蛋白含量顯著低于白光。藻藍(lán)蛋白含量藍(lán)光下較白光增加19%,綠光和紅光下較對(duì)照組減少19.34%和11.57%。藍(lán)光和綠光下壇紫菜葉狀體在培養(yǎng)15d后有單性生殖現(xiàn)象發(fā)生,藍(lán)光下發(fā)生單性生殖的細(xì)胞可完全轉(zhuǎn)變?yōu)榻z狀體且色澤正常,綠光下絲狀體會(huì)發(fā)育停滯并出現(xiàn)細(xì)胞死亡現(xiàn)象。
[Abstract]:Pyropia haitanensis, which belongs to the red algae gate (Rhodophyta), is a unique warm temperate laver in China. It is mainly cultivated in Zhejiang, Fujian and Guangdong and other coastal areas. It has rich nutritional value and is popular among Chinese people. Its annual output accounts for more than 75% of the national purple vegetable production. The life history of the purple Porphyra is from macroleaf. The form of the filamentous generation and the microscopic filamentous generation, of which we eat part of the leaf shaped body of Porphyra haitanensis. The leaf shape is formed and developed from the filamentous body, and the filamentous form can be preserved in the form of "agricultural seed" in the laboratory for a long time. Light is the original force of photosynthesis, the light quality is the important attribute of light, water water water. The changes in depth and transparency can change the light quality, and the light quality regulates the growth, development, morphology and Photosynthesis of algae. In this experiment, the effects of light quality on the growth and physiology of the filamentous body and leaf body of Porphyra haitanensis were studied in this experiment, and the light quality was explored from the molecular level to the Porphyra haitanensis. The main results were as follows: 1. the effects of different light quality LED light sources on the growth and physiological characteristics of free filamentous bodies of Porphyra haitanensis were compared, and the growth and physiological characteristics of free filamentous bodies (LED) with different light quality (green light 510~550nm, blue light 455~475nm, red light 580~630nm, white light 400~760nm) were studied. The study shows that blue light can increase the growth rate of free filamentous bodies. The weight gain of the algae under blue light is 1.10 times, 1.82 times and 2.17 times (P0.05), respectively. The blue light treatment helps the accumulation of chlorophyll a and carotenoid, the content of the two is compared with the white light, the green light and the red light treatment are increased by 13.77%, 47.69%, 63.42%. And 8.87%, 87.07%, 97.73% (P0.05). Blue and white light both benefit the biosynthesis of phycoerythroprotein, green light and red light reduce the synthesis of phycohemoglobin, but there is no significant difference in phycocyanin synthesis between four light light sources (P0.05). Blue light can significantly increase the activity of carbonic anhydrase (CA) and increase the activity of CA under white light by 11.36% (P0.05). Blue and green light is significantly increased. The activity of high 1,5- two phosphoric acid nuclear ketosylcarboxycarboxytransferase / oxygenase (RubisCO) increased by 28.17% and 61.21% (P0.05) under white light respectively. The color and lustre of red and green algae were dim, the stellate pigments were less, some of the algae body cells were spillover and hollow state, while the blue and white algae were healthy and the color was bright red. Therefore, in the process of the free filamentous reproduction of Porphyra haitanensis, the blue light component of LED light source can be properly increased, and the differential expression of the free filamentous body of Porphyra haitanensis under the blue and green light and dark conditions is reduced by the differential expression analysis of the free filamentous body of Porphyra haitanensis under the conditions of.2. and dark. High throughput transcriptional sequence is used to establish the library of the filamentous body transcriptional group of Porphyra haitanensis. The changes of the gene expression in the filamentous body of Porphyra haitanensis under blue light were analyzed. 124527 unigenes strips were obtained with an average length of 585bp. The content of GC was the highest number of annotated unigenes in all GO annotations of 59.96%., a total of 24535, with the most unigenes in the single entry catalysis, reaching 8497.EggNOG functional analysis. The general functional genes account for 4.09% of the total unigenes, post-translational modification, protein folding and molecular chaperone (3.42%) and signal transduction mechanism (2.90%), including three functional units with the least number of unigenes (0.11%), the extracellular structure (0.05%) and cell movement (0.02%).KEGG analysis, most of which are metabolism. Through comparison and analysis, this paper screened 5936 differences unigenes, including 1457 up-regulated genes and 4479 down regulated genes. The differential expression of unigenes was significantly enriched in metabolism, amino acid synthesis, glyoxylic acid and two carboxylic acid cycles, indicating that these unigenes were mainly involved in the basal metabolism of the filamentous body of Porphyra haitanensis. The effects of protein synthesis, respiration and enzyme activity on the growth and development of leaf shape of Porphyra haitanensis.3. were compared. The effects of light emitting diodes (green light 510~550nm, blue light 455~475nm, red light 580~630n m, white light 400~760nm) on the growth and physiological characteristics of Tan Zi leaflets were compared. The results showed that four kinds of light emitting diodes (LED) had the effects on the growth and physiological characteristics of the leaf shape of Tan Zi. White light growth was the best in light mass culture. The maximum specific growth rate under white light exceeded blue light 84.54% and green light 90.28% (P0.05). The maximum length of white light under white light was up to 51.55cm, the average length was blue light, 2.66,3.86 and 2.42 times (P0.05) of green light and red light growth length (P0.05), and three single light colors were red. The color and the cells of the leaf shape of Porphyra haitanensis under different light quality were observed and observed by the microscopic observation and microscopic observation. The color and the color of the algae in the blue light and the green light under blue light were very red under the blue light, and the pigment protein content in the different light quality was obviously poor. The content of chlorophyll a and carotene like under blue light was the highest, the lowest under red light (P0.05), and there was no significant difference between the chlorophyll content of the green light and the control group (P0.05). The content of phycobentin in blue light algae was significantly higher than that of the other experimental groups (P0.05), and the content of phycosalin under blue light had reached 1.94 times that of the control group, green and red. The content of phycocyanin in light was significantly lower than that of white light. The content of phycocyanin was increased by 19% under blue light, 19.34% in green light and under red light, and 19.34% in green light and in the control group, and by 11.57%. blue light and green light under the culture of Porphyra haitanensis. After the culture of 15d, the cells of monogenesis in blue light could be completely transformed into filamentous body and the color and lustre were normal. Under green light, filamentous development stops and cell death occurs.
【學(xué)位授予單位】:上海海洋大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:S917.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 董宏坡,左正宏,王重剛,王誠(chéng),陳奕欣;福建省平潭海區(qū)壇紫菜品質(zhì)性狀的分析[J];廈門(mén)大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年05期
2 李兵;徐燕;紀(jì)德華;張?jiān)?謝潮添;;高溫靜水脅迫培養(yǎng)對(duì)壇紫菜品質(zhì)的影響[J];漁業(yè)科學(xué)進(jìn)展;2013年03期
3 歐洪來(lái);;壇紫菜新品種“申福二號(hào)”養(yǎng)殖技術(shù)[J];中國(guó)水產(chǎn);2013年06期
4 高洪峰,紀(jì)明侯,曹文達(dá);南、北方壇紫菜多糖結(jié)構(gòu)特征的比較研究[J];海洋與湖沼;1992年05期
5 林星;壇紫菜的主要病害與對(duì)策[J];科學(xué)養(yǎng)魚(yú);2003年02期
6 王奇欣;福建省壇紫菜加工產(chǎn)業(yè)化發(fā)展思路[J];福建水產(chǎn);2005年02期
7 陳燁,裴魯青,嚴(yán)小軍,楊銳;磷對(duì)壇紫菜孢子囊枝形成的影響[J];水產(chǎn)養(yǎng)殖;2005年05期
8 謝松平;壇紫菜固定樁懸浮式養(yǎng)殖技術(shù)[J];中國(guó)水產(chǎn);2005年03期
9 駱其君;馮婧;嚴(yán)小軍;呂彤;;海水圍塘生態(tài)栽培壇紫菜[J];水產(chǎn)科學(xué);2006年11期
10 邱澄宇;;壇紫菜等溫吸濕曲線的研究[J];集美大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年01期
相關(guān)會(huì)議論文 前10條
1 孫彬;黃健;馬家海;宋武林;謝程亮;;壇紫菜品質(zhì)分析[A];中國(guó)海洋湖沼學(xué)會(huì)藻類學(xué)分會(huì)第七屆會(huì)員大會(huì)暨第十四次學(xué)術(shù)討論會(huì)論文摘要集[C];2007年
2 陳海敏;嚴(yán)小軍;王秀娟;朱竹君;;壇紫菜的免疫防御方式研究[A];中國(guó)藻類學(xué)會(huì)第八次會(huì)員代表大會(huì)暨第十六次學(xué)術(shù)討論會(huì)論文摘要集[C];2011年
3 陳昌生;謝潮添;紀(jì)德華;徐燕;史修周;梁艷;張?jiān)?周巍巍;趙玲敏;;壇紫菜新品系選育的研究[A];慶祝中國(guó)藻類學(xué)會(huì)成立30周年暨第十五次學(xué)術(shù)討論會(huì)摘要集[C];2009年
4 左正宏;楊聽(tīng)林;王礞礞;蔡嘉力;陳奕欣;;壇紫菜別藻藍(lán)蛋白的表達(dá)、純化及生物學(xué)活性的分析[A];第十次中國(guó)生物物理學(xué)術(shù)大會(huì)論文摘要集[C];2006年
5 嚴(yán)興洪;周曉;陳俊華;李琳;梁志強(qiáng);;一種壇紫菜新細(xì)菌病害的研究[A];中國(guó)水產(chǎn)學(xué)會(huì)第五屆青年學(xué)術(shù)年會(huì)摘要集[C];2004年
6 肖海東;;壇紫菜果糖1,6-二磷酸酶基因的克隆和表達(dá)分析[A];2012年中國(guó)水產(chǎn)學(xué)會(huì)學(xué)術(shù)年會(huì)論文摘要集[C];2012年
7 左正宏;江雨;陳瑜芳;王重剛;陳奕欣;;外源植物激素對(duì)壇紫菜生長(zhǎng)發(fā)育的影響及蛋白組學(xué)分析[A];第十次中國(guó)生物物理學(xué)術(shù)大會(huì)論文摘要集[C];2006年
8 駱其君;馮婧;嚴(yán)小軍;裴魯青;J.G.Ferreira;;壇紫菜可視化個(gè)體生長(zhǎng)模型的構(gòu)建[A];中國(guó)海洋湖沼學(xué)會(huì)藻類學(xué)分會(huì)第七屆會(huì)員大會(huì)暨第十四次學(xué)術(shù)討論會(huì)論文摘要集[C];2007年
9 代真真;謝潮添;徐燕;紀(jì)德華;陳昌生;;壇紫菜碳酸酐酶家族基因的克隆與表達(dá)分析[A];2013年中國(guó)水產(chǎn)學(xué)會(huì)學(xué)術(shù)年會(huì)論文摘要集[C];2013年
10 嚴(yán)興洪;黃林彬;周曉;李琳;;壇紫菜的一種新細(xì)菌病害[A];中國(guó)海洋湖沼學(xué)會(huì)藻類學(xué)分會(huì)第七屆會(huì)員大會(huì)暨第十四次學(xué)術(shù)討論會(huì)論文摘要集[C];2007年
相關(guān)重要報(bào)紙文章 前10條
1 本報(bào)記者 林淑霞;壇紫菜再現(xiàn)“黑金”魅力[N];福建日?qǐng)?bào);2006年
2 本報(bào)記者 張建琛;福建壇紫菜產(chǎn)業(yè)何以煥發(fā)青春[N];科技日?qǐng)?bào);2006年
3 邱新福邋章國(guó)森;最大壇紫菜加工廠落戶蒼南[N];溫州日?qǐng)?bào);2007年
4 李玉燕 劍鋒 姜艷紅;五顏六色的紫菜有望明年上市[N];農(nóng)民日?qǐng)?bào);2006年
5 本報(bào)記者 張躍良;親親壇紫菜:標(biāo)準(zhǔn)化推動(dòng)產(chǎn)業(yè)化[N];中國(guó)工業(yè)報(bào);2008年
6 記者 黃元章;采取五項(xiàng)措施應(yīng)對(duì)壇紫菜爛苗[N];閩東日?qǐng)?bào);2008年
7 見(jiàn)習(xí)記者 陳小妹;我市壇紫菜養(yǎng)殖出現(xiàn)大面積爛苗現(xiàn)象[N];閩東日?qǐng)?bào);2008年
8 許金練;廈門(mén)南方壇紫菜種質(zhì)庫(kù)建設(shè)獲肯定[N];中國(guó)漁業(yè)報(bào);2009年
9 霞浦記者站 歐招生;小企業(yè)獲“三證” 產(chǎn)品走進(jìn)大市場(chǎng)[N];閩東日?qǐng)?bào);2007年
10 黃俊加;淺海壇紫菜浮筏式養(yǎng)殖新模式[N];福建科技報(bào);2006年
相關(guān)博士學(xué)位論文 前7條
1 陳斌斌;海洋酸化背景下經(jīng)濟(jì)海藻龍須菜與壇紫菜的生物學(xué)特性[D];華南理工大學(xué);2015年
2 曹敏;壇紫菜基因組結(jié)構(gòu)特征及紅毛菜功能基因組特性分析[D];中國(guó)海洋大學(xué);2015年
3 趙揚(yáng);壇紫菜轉(zhuǎn)鱟素基因研究[D];廈門(mén)大學(xué);2005年
4 王莉;壇紫菜響應(yīng)失水脅迫的轉(zhuǎn)錄組和表達(dá)譜特征分析[D];中國(guó)海洋大學(xué);2013年
5 姜紅霞;壇紫菜對(duì)陽(yáng)光紫外輻射的生理生態(tài)學(xué)響應(yīng)[D];汕頭大學(xué);2007年
6 方永軍;基于EST的超高產(chǎn)橡膠樹(shù)膠乳基因表達(dá)譜分析及其高產(chǎn)機(jī)理探討以及壇紫菜絲狀孢子體基因表達(dá)分析[D];浙江大學(xué);2008年
7 苗妍秀;黃瓜幼苗對(duì)紅藍(lán)光質(zhì)響應(yīng)的生理機(jī)制[D];中國(guó)農(nóng)業(yè)大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 韓軍軍;光質(zhì)對(duì)壇紫菜生長(zhǎng)和生理學(xué)特性的影響及壇紫菜絲狀體藍(lán)光效應(yīng)的轉(zhuǎn)錄組分析[D];上海海洋大學(xué);2017年
2 王婷;壇紫菜新品系和重要農(nóng)藝性狀特異SCAR標(biāo)記的開(kāi)發(fā)[D];集美大學(xué);2013年
3 李丹;壇紫菜固態(tài)發(fā)酵調(diào)味粉制備技術(shù)研究[D];福建農(nóng)林大學(xué);2015年
4 白露;壇紫菜多肽的分離純化及其抗腫瘤活性研究[D];華南理工大學(xué);2016年
5 翁琳;壇紫菜低溫冷藏生物學(xué)效應(yīng)的研究[D];集美大學(xué);2007年
6 徐燕;壇紫菜誘變與雜交育種初步研究[D];集美大學(xué);2007年
7 佘大為;抗生素對(duì)壇紫菜配子體生長(zhǎng)和代謝的影響[D];遼寧師范大學(xué);2007年
8 江浩;壇紫菜中重金屬元素的檢測(cè)方法和脫除技術(shù)研究[D];寧波大學(xué);2009年
9 周巍巍;壇紫菜對(duì)低氮磷脅迫應(yīng)答機(jī)制的初步研究[D];集美大學(xué);2011年
10 丁仲仲;壇紫菜中重金屬脫除技術(shù)研究[D];寧波大學(xué);2014年
,本文編號(hào):1952509
本文鏈接:http://sikaile.net/shoufeilunwen/zaizhiyanjiusheng/1952509.html