異養(yǎng)硝化—好氧反硝化細菌在海水養(yǎng)殖中的應(yīng)用技術(shù)研究
本文選題:異養(yǎng)硝化-好氧反硝化細菌 + 凡納濱對蝦; 參考:《上海海洋大學(xué)》2017年碩士論文
【摘要】:高密度集約化的海水養(yǎng)殖模式導(dǎo)致養(yǎng)殖過程中經(jīng)常出現(xiàn)養(yǎng)殖水體氮素超標現(xiàn)象,嚴重威脅海水養(yǎng)殖動物的健康和生長。同時,生產(chǎn)換水后養(yǎng)殖廢水的外排,也會加劇周邊海域的氮素污染,水體高濃度氮素已經(jīng)成為導(dǎo)致水體富營養(yǎng)化的主要因素之一,因此加強水產(chǎn)養(yǎng)殖廢水脫氮技術(shù)的研究有著深遠意義。生物脫氮法由于具有低成本、無二次污染、操作簡單等優(yōu)點,常被應(yīng)用于廢水的處理。選擇高效優(yōu)良的脫氮菌株是生物脫氮成功的關(guān)鍵,異養(yǎng)硝化-好氧反硝化細菌為近二十年來篩選出的新型脫氮細菌,突破了人們對傳統(tǒng)生物脫氮理論的認識,其利用水體有機物和氮素作為自身碳氮源進行同時硝化反硝化作用,實現(xiàn)生物脫氮。目前,關(guān)于異養(yǎng)硝化-好氧反硝化細菌的研究大多數(shù)集中在菌種篩選分離與脫氮特性方面,對其應(yīng)用技術(shù)的研究報道尚不多見,尤其在海水養(yǎng)殖環(huán)境中應(yīng)用的報道更少。本文選擇本實驗室篩選保存的3株異養(yǎng)硝化-好氧反硝化細菌,通過養(yǎng)殖圓斑星鰈廢水凈化和自制模擬生物濾器對對其進行了多方面的海水養(yǎng)殖應(yīng)用技術(shù)研究,旨在探究菌株的實際應(yīng)用方法及效果,為進一步建立應(yīng)用工藝提供依據(jù)。主要試驗內(nèi)容與結(jié)果如下:(1)選擇初始體重為(10.2±1.3)g的凡納濱對蝦,隨機分為4組,每組30尾,進行不換水連續(xù)養(yǎng)殖。期間分別在養(yǎng)殖水體中加入花津灘芽孢桿菌(Bacillus hwajinpoensis)SLWX2、嗜堿鹽單胞菌(Halomonas alkaliphila)X3以及SLWX2+X3復(fù)合組。通過測定不同組合各項無機氮及有機物的變化情況檢驗了它們對養(yǎng)殖水體的凈化效果。試驗結(jié)果顯示,養(yǎng)殖過程中,對照組氨氮濃度、亞硝酸氮濃度、硝酸氮濃度、總氮濃度、化學(xué)需氧量濃度呈持續(xù)上升趨勢,而各試驗組各項指標第4天有所降低,本研究結(jié)果表明添加異養(yǎng)硝化-好氧反硝化細菌可在不添加碳源的情況下實現(xiàn)脫氮的功能,有效維護養(yǎng)殖水質(zhì)。(2)選擇初始體重為(98±6)g的圓斑星鰈,隨機分為8組,每組30尾,進行不換水連續(xù)養(yǎng)殖。期間分別在養(yǎng)殖水體中加入花津灘芽孢桿菌(Bacillus hwajinpoensis)SLWX2、嗜堿鹽單胞菌(Halomonas alkaliphila)X3和麥氏交替單胞菌(Alteromonas macleodii)SLNX2的不同組合。通過測定不同組合中各項無機氮及有機物的變化情況檢驗了它們對養(yǎng)殖水體的凈化效果。試驗結(jié)果顯示,養(yǎng)殖過程中,對照組的氨氮濃度、亞硝酸氮濃度、硝酸氮濃度、總氮濃度、化學(xué)需氧量濃度呈持續(xù)上升趨勢,分別從0.21mg/L升至15.94mg/L,0.08mg/L升至5.68mg/L,1.10mg/L升至7.05mg/L,1.74mg/L升至38.86mg/L,1.19mg/L升至22.87mg/L。而加菌組的各指標濃度一直低于對照組。其中,SLWX2+X3+SLNX2組合對圓斑星鰈養(yǎng)殖廢水凈化效果最佳,氨氮濃度、亞硝酸氮濃度、硝酸氮濃度、總氮濃度、化學(xué)需氧量濃度分別低于對照組68.55%、48.36%、58.38%、40.02%、27.47%。SLWX2+X3組合的凈化效果次之。此外,第21天時,對照組因水質(zhì)差而出現(xiàn)大量死魚現(xiàn)象,各試驗組中僅有少量死魚。本研究結(jié)果表明添加異養(yǎng)硝化-好氧反硝化細菌可在不添加碳源的情況下實現(xiàn)脫氮的功能,有效維護養(yǎng)殖水質(zhì),對圓斑星鰈不但無毒害及致病作用,反而因改善其環(huán)境而提高了它們的存活率。(3)自制模擬生物濾器,分別接種花津灘芽孢桿菌(Bacillus hwajinpoensis)SLWX2、嗜堿鹽單胞菌(Halomonas alkaliphila)X3和麥氏交替單胞菌(Alteromonas macleodii)SLNX2的不同組合進行生物強化掛膜。前期試驗探討了三株細菌不同組合生物膜對靜止養(yǎng)殖廢水的凈化效果。后期試驗,選用對各無機氮去除效果最佳的SLWX2+X3+SLNX2組合作為優(yōu)勢菌種再次掛膜,對比分析了優(yōu)勢菌種強化掛膜與自然掛膜兩種成熟生物膜對連續(xù)運行養(yǎng)殖廢水的凈化效果效果。靜止養(yǎng)殖廢水凈化試驗結(jié)果表明:各試驗組對養(yǎng)殖廢水各項無機氮及有機物指標的去除效果均優(yōu)于對照組。其中,SLWX2+X3+SLNX2組合對各項指標去除效果最佳,第24h、48h對NH4+-N、NO2--N、CODMn、TN的去除率分別為95.8%、82%、60.8%及100%、100%、80.7%、59.5%。而自然掛膜對照組前24h亞硝酸氮濃度上升,第48h對NH4+-N、NO2--N、CODMn、TN的去除率分別為95.5%、50.52%、38.1%、13.44%。各試驗組中NO3--N濃度先上升后下降,而對照組NO3--N濃度呈持續(xù)上升,該試驗表明添加異養(yǎng)硝化-好氧反硝化細菌可有效地降低養(yǎng)殖廢水中氮素和有機物濃度。后期連續(xù)運行廢水凈化試驗結(jié)果表明:接種優(yōu)勢細菌的試驗組對各項無機氮的去除效果均優(yōu)于自然掛膜組,其中接種量為108cfu/mL的試驗組對NH4+-N、NO2--N、NO3--N去除效果均最佳,最大去除率分別為31.6%、11.33%、15.6%,107cfu/ml試驗組次之,說明生物強化掛膜對連續(xù)運行廢水有持續(xù)凈化能力。
[Abstract]:The high density and intensive aquaculture model often leads to the phenomenon of nitrogen exceeding the standard in aquaculture water, which seriously threatens the health and growth of marine aquaculture animals. At the same time, the production of the outer row of aquaculture wastewater after the production of water exchange also aggravates the nitrogen pollution in the surrounding sea area. The high concentration of nitrogen in the water body has become the main cause of the eutrophication of the water body. As one of the factors, it is of profound significance to strengthen the nitrogen removal technology of aquaculture wastewater. Biological denitrification is often used in the treatment of wastewater because of its advantages of low cost, no two pollution and simple operation. It is the key to choose the high efficient denitrification strain, and the heterotrophic nitrification denitrifying bacteria is nearly two The new type of denitrification bacteria screened in the past ten years has broken through people's understanding of the traditional biological denitrification theory. It uses organic matter and nitrogen as its own carbon and nitrogen source for simultaneous nitrification and denitrification to achieve biological denitrification. At present, most of the studies on heterotrophic nitrification bacteria are concentrated in screening and separation of bacteria. There are few reports on the application of nitrogen characteristics, especially in the aquaculture environment. In this paper, 3 heterotrophic nitrifying aerobic denitrifying bacteria were selected and preserved in our laboratory, and many aspects of marine aquaculture were carried out through the purification of the flounder wastewater and the self-made simulated biofilter. The application technology research was designed to explore the practical application method and effect of strain. The main contents and results were as follows: (1) the shrimp with initial weight of (10.2 + 1.3) g was randomly divided into 4 groups, each group of 30 tails, continuous aquaculture without water exchange. Bacillus hwajinpoensis SLWX2, Halomonas alkaliphila (Halomonas alkaliphila) X3 and SLWX2+X3 composite group. By measuring the changes of inorganic nitrogen and organic matter in different combinations, the effects of their purification on the aquaculture water were tested. The concentration of nitrogenous nitrogen, total nitrogen and chemical oxygen demand increased continuously, and the indexes of each test group decreased for fourth days. The results of this study showed that the addition of heterotrophic nitration aerobic denitrifying bacteria could realize the function of denitrification without adding carbon source and effectively maintain the water quality. (2) the initial weight of (98 + 6) g was selected. Flounder, randomly divided into 8 groups, each group of 30 tails, did not exchange water for continuous culture. During the period, different combinations of Bacillus hwajinpoensis SLWX2, Halomonas alkaliphila X3 and Alteromonas macleodii (Alteromonas macleodii) SLNX2 were added to the aquaculture water respectively. The results showed that the concentration of ammonia nitrogen, nitrite, nitrogen, total nitrogen, and chemical oxygen demand in the control group increased continuously during the culture process, and increased from 0.21mg/L to 15.94mg/L, 0.08mg/L to 5.68mg/L, 1.10mg/L, respectively. To 7.05mg/L, 1.74mg/L to 38.86mg/L and 1.19mg/L to 22.87mg/L., the concentration of each index in the addition of bacteria was lower than that of the control group. Among them, the SLWX2+X3+SLNX2 combination had the best purification effect on the flounder aquaculture wastewater, and the concentration of ammonia nitrogen, nitrite, nitrogen, total nitrogen, and the concentration of total nitrogen, and the concentration of chemical oxygen demand were 68.55%, 4 respectively. The purification effect of 8.36%, 58.38%, 40.02%, 27.47%.SLWX2+X3 combination was second. In addition, a large number of dead fish appeared in the control group because of poor water quality at twenty-first days. Only a small amount of dead fish were found in the experimental groups. The results of this study showed that the addition of heterotrophic nitration aerobic denitrifying bacteria could realize the function of denitrification without the addition of carbon source and effectively maintain the culture. Water quality, not only did no toxic and pathogenic effects on the flounder, but improved their survival rate by improving their environment. (3) a self-made simulated biofilter, respectively, inoculated with Bacillus subtilis (Bacillus hwajinpoensis) SLWX2, Halomonas alkaliphila X3 and Alteromonas macleodii SLNX2 (Alteromonas macleodii) SLNX2 The effect of three bacteria different combination biofilms on the purification of stationary aquaculture wastewater was studied in the previous experiment. In the later experiment, the best SLWX2+X3+SLNX2 combination of the inorganic nitrogen removal effect was selected as the dominant strain to hang the film again, and two kinds of dominant strains were compared and analyzed. The results of the static culture wastewater purification test showed that the removal efficiency of various inorganic nitrogen and organic matter indexes of each test group was better than that of the control group. Among them, the SLWX2+X3+SLNX2 combination had the best effect on the removal of various indexes, and 24h, 48h to NH4+-N, NO2--N, CODMn, TN. The removal rates were 95.8%, 82%, 60.8% and 100%, 100%, 80.7%, 59.5%., while the concentration of 24h nitrite in the natural film control group increased, and the removal rates of NH4+-N, NO2--N, CODMn, TN were 95.5%, 50.52%, 38.1%, respectively, and then the NO3--N concentration in the experimental groups of 13.44%. increased first and then decreased, while the NO3--N concentration in the control group rose continuously. The experiment showed that the addition of NO3--N was added. Heterotrophic nitrification and aerobic denitrifying bacteria can effectively reduce the concentration of nitrogen and organic matter in aquaculture wastewater. The results of the later continuous operation of wastewater purification test show that the removal efficiency of inorganic nitrogen in the experimental group with inoculated dominant bacteria is better than that of the natural film group, and the test group with the inoculation amount of 108cfu/mL for the removal of NH4+-N, NO2--N, and NO3--N The results were all the best, the maximum removal rates were 31.6%, 11.33%, 15.6%, and the 107cfu/ml test group was the next, indicating that the biofilm has a continuous purification capacity for the continuous operation of wastewater.
【學(xué)位授予單位】:上海海洋大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:X714;X172
【相似文獻】
相關(guān)期刊論文 前10條
1 李平,張山,劉德立;細菌好氧反硝化研究進展[J];微生物學(xué)雜志;2005年01期
2 邵晴;余曉斌;;好氧反硝化細菌的篩選及反硝化特性研究[J];生物技術(shù);2008年03期
3 高喜燕;劉鷹;鄭海燕;劉纓;劉志培;;一株海洋好氧反硝化細菌的鑒定及其好氧反硝化特性[J];微生物學(xué)報;2010年09期
4 郭端強;劉海龍;萬亞濤;李小衛(wèi);陳艷艷;管麗冰;單林娜;;一株好氧反硝化細菌的分離鑒定及反硝化特性研究[J];生物技術(shù)通報;2012年10期
5 黃運紅;龍中兒;許楊;;一株好氧反硝化細菌的篩選及初步鑒定[J];食品科學(xué);2007年08期
6 吳松維;孫華;吳偉祥;陳英旭;;好氧反硝化脫氮作用研究進展[J];科技通報;2008年05期
7 石小彤;李彥芹;邢國偉;康現(xiàn)江;;一株耐鹽好氧反硝化細菌的分離篩選及鑒定[J];生物技術(shù)通報;2013年03期
8 NAHIMANA Liberat;楊希;聶輝;李平;張勇;劉合欽;汪艷成;劉德立;;一株好氧反硝化細菌的分離鑒定及其反硝化能力研究(英文)[J];華中師范大學(xué)研究生學(xué)報;2005年03期
9 王弘宇;馬放;蘇俊峰;左薇;張獻旭;張佳;;好氧反硝化菌株的鑒定及其反硝化特性研究[J];環(huán)境科學(xué);2007年07期
10 蔡昌鳳;梁磊;;高效好氧反硝化細菌的篩選及脫氮特性的研究[J];環(huán)境科學(xué)與技術(shù);2011年01期
相關(guān)會議論文 前10條
1 蔣侃;馬放;孫鐵珩;徐善文;蘇俊峰;魏利;;電氣石對好氧反硝化菌株反硝化特性的影響[A];《硅酸鹽學(xué)報》創(chuàng)刊50周年暨中國硅酸鹽學(xué)會2007年學(xué)術(shù)年會論文摘要集[C];2007年
2 呂聰;馬玖彤;劉懿;張鳳君;;紫外誘變選育低亞硝酸鹽積累的好氧反硝化菌株[A];2008中國環(huán)境科學(xué)學(xué)會學(xué)術(shù)年會優(yōu)秀論文集(下卷)[C];2008年
3 蔣侃;馬放;孫鐵珩;徐善文;蘇俊峰;魏利;;電氣石對好氧反硝化菌株反硝化特性的影響[A];《硅酸鹽學(xué)報》創(chuàng)刊50周年暨中國硅酸鹽學(xué)會2007年學(xué)術(shù)年會論文集(一)[C];2007年
4 楊希;熊麗;李娜;崔古貞;魏艷紅;劉松;費晶;劉德立;;好氧反硝化細菌特性研究及其固定化應(yīng)用[A];第十次全國環(huán)境微生物學(xué)術(shù)研討會論文摘要集[C];2007年
5 劉佳苗;何池全;徐秋月;丁國際;張東;;活性炭固定好氧反硝化菌株聯(lián)合臭氧共同處理模擬微污染水的研究[A];Proceedings of Conference on Environmental Pollution and Public Health(CEPPH 2012)[C];2012年
6 安健;陳百堯;龔琪本;伏光輝;唐興本;;好氧反硝化芽孢桿菌篩選及其反硝化特性研究[A];漁業(yè)科技創(chuàng)新與發(fā)展方式轉(zhuǎn)變——2011年中國水產(chǎn)學(xué)會學(xué)術(shù)年會論文摘要集[C];2011年
7 安健;宋增福;楊先樂;張小能;黃志華;;好氧反硝化YX-6菌生物學(xué)特性研究及其鑒定分析[A];2009年中國水產(chǎn)學(xué)會學(xué)術(shù)年會論文摘要集[C];2009年
8 鄭佳佳;沈濤;傅羅琴;鄧斌;李衛(wèi)芬;;一株硝化反硝化菌Pseudomonas putida F6的篩選鑒定及反硝化特性研究[A];生態(tài)環(huán)境與畜牧業(yè)可持續(xù)發(fā)展學(xué)術(shù)研討會暨中國畜牧獸醫(yī)學(xué)會2012年學(xué)術(shù)年會和第七屆全國畜牧獸醫(yī)青年科技工作者學(xué)術(shù)研討會會議論文集——T03環(huán)境與動物健康專題[C];2012年
9 張文;申元英;王圣瑞;趙海超;;洱海海舌灣沉積物中好氧反硝化細菌的分離鑒定研究[A];首屆中國湖泊論壇論文集[C];2011年
10 趙彬;林燕;何義亮;;異養(yǎng)硝化及其在脫氮工藝中的研究[A];第二屆全國環(huán)境化學(xué)學(xué)術(shù)報告會論文集[C];2004年
相關(guān)博士學(xué)位論文 前10條
1 文屹;兩株異養(yǎng)硝化—好氧反硝化細菌的分離、篩選、鑒定和特性研究[D];華南理工大學(xué);2010年
2 楊云龍;嗜熱螯臺球菌TAD1的脫氮性能及其好氧反硝化分子機制的初步研究[D];華南理工大學(xué);2012年
3 杜叢;基于Pseudomonas sp. T13強化的好氧反硝化系統(tǒng)構(gòu)建及脫氮效能研究[D];哈爾濱工業(yè)大學(xué);2017年
4 馬秀蘭;SBR法生物強化處理低溫低C/N比污水的研究[D];吉林大學(xué);2010年
5 劉勇波;適冷苯胺降解菌Pseudomonas migulae AN-1的好氧反硝化及生物循環(huán)井修復(fù)硝酸鹽污染地下水研究[D];吉林大學(xué);2015年
6 吳超;高產(chǎn)油微藻基于基因組的初級代謝網(wǎng)絡(luò)重構(gòu)和代謝流分析[D];清華大學(xué);2015年
7 楊壘;高效異養(yǎng)硝化細菌的脫氮特性及其處理高氨氮廢水研究[D];西安建筑科技大學(xué);2016年
8 郝s執(zhí),
本文編號:1952211
本文鏈接:http://sikaile.net/shoufeilunwen/zaizhiyanjiusheng/1952211.html