新型耕耘機(jī)的前置深松部件研究
本文選題:深松部件 + 前置懸掛。 參考:《西南大學(xué)》2017年碩士論文
【摘要】:土壤深松技術(shù)作為耕作技術(shù)中的重要組成部分,能夠打破因長(zhǎng)期使用傳統(tǒng)耕作方式而產(chǎn)生的犁底層,有效改善土壤結(jié)構(gòu),促進(jìn)作物生長(zhǎng)。目前,深松機(jī)具大多是與大中型拖拉機(jī)匹配采用后置懸掛進(jìn)行作業(yè)。我國(guó)丘陵山區(qū)面積占國(guó)土面積的2/3以上,但由于其地形不平坦等因素導(dǎo)致大中型拖拉機(jī)并不適用,因此,在丘陵山區(qū)進(jìn)行深松作業(yè)十分困難。針對(duì)這一問(wèn)題,本文對(duì)深松部件前置進(jìn)行了分析研究,使其能夠與新型耕耘機(jī)匹配,在丘陵山區(qū)進(jìn)行深松作業(yè),本文主要包括以下研究?jī)?nèi)容:(1)前置深松部件的研究選擇間隔深松作業(yè)方式,并分析深松機(jī)具的作業(yè)要求,確定耕幅為1.2m,深松深度為40cm,配置兩把深松鏟,鏟間間距為60cm。通過(guò)對(duì)三種常見(jiàn)深松機(jī)型的比較,選擇以自激振動(dòng)型深松機(jī)為本文深松機(jī)型。分析深松鏟后置懸掛時(shí)其提升和入土的運(yùn)動(dòng)軌跡,設(shè)計(jì)具有相同運(yùn)動(dòng)軌跡的平行四桿前懸掛機(jī)構(gòu),確定前懸掛機(jī)構(gòu)各桿件的尺寸。根據(jù)自激振動(dòng)原理,設(shè)計(jì)自激振動(dòng)機(jī)構(gòu)。結(jié)合機(jī)架安裝尺寸和深松作業(yè)要求,設(shè)計(jì)相對(duì)應(yīng)的深松鏟。最后通過(guò)UG建立前懸掛機(jī)架、自激振動(dòng)機(jī)構(gòu)和深松鏟的三維模型并進(jìn)行裝配,完成前置深松部件的初步設(shè)計(jì)。(2)深松部件前置懸掛作業(yè)的理論分析對(duì)深松鏟和機(jī)架在作業(yè)時(shí)的受力進(jìn)行理論分析。根據(jù)懸掛的設(shè)計(jì)要求和校核準(zhǔn)則,對(duì)深松鏟的入土性能、耕深穩(wěn)定性和縱向穩(wěn)定性進(jìn)行分析,結(jié)果表明,本文所設(shè)計(jì)的前置懸掛作業(yè)部件均滿足上述要求。通過(guò)試驗(yàn)和計(jì)算得出深松部件前置懸掛使得耕耘機(jī)的重心前移了118.23mm,通過(guò)前后分組懸掛可使耕耘機(jī)獲得更大的壓力中心位移允許值。通過(guò)對(duì)深松旋耕聯(lián)合作業(yè)時(shí)整機(jī)的受力分析得知,深松部件前置懸掛作業(yè)可以增大拖拉機(jī)的附著力,從而提高其切線驅(qū)動(dòng)力,進(jìn)一步提高牽引力、牽引功率和牽引效率。通過(guò)理論分析驗(yàn)證了前置深松部件設(shè)計(jì)的合理性,并為后續(xù)的數(shù)值模擬研究和靜態(tài)分析奠定基礎(chǔ)。(3)深松作業(yè)過(guò)程的數(shù)值模擬研究取西南大學(xué)農(nóng)場(chǎng)旱田土壤為樣本,測(cè)得土壤的基本參數(shù)。基于光滑粒子流體動(dòng)力學(xué)(SPH)構(gòu)建出深松鏟深松土壤的理想模型。利用ANSYS/LS-DYNA和LS-PREPOST對(duì)該模型進(jìn)行數(shù)值模擬研究,得到深松作業(yè)時(shí)土壤施加在深松鏟上的最大阻力為2560N,平均功耗為13kW,表層土壤擾動(dòng)較小。通過(guò)數(shù)值模擬研究,能夠初步估算作業(yè)效果和深松所需功耗,并為前置懸掛機(jī)架的靜態(tài)分析奠定基礎(chǔ)。(4)前置懸掛機(jī)架的靜態(tài)分析利用數(shù)值模擬分析中得到的深松阻力求出前置懸掛機(jī)架的受力。利用Workbench對(duì)前置懸掛機(jī)架進(jìn)行靜力學(xué)分析和模態(tài)分析,得到前置懸掛機(jī)架在作業(yè)時(shí)的最大位移為3.3904mm,最大應(yīng)力為96.63MPa,均滿足設(shè)計(jì)要求。前六階的固有頻率分布在30~170Hz之間。通過(guò)靜態(tài)分析可知機(jī)架的薄弱部位為機(jī)架與機(jī)頭的螺栓連接處,將該處改用為U型螺栓連接,并通過(guò)添加筋肋提高平行四桿機(jī)構(gòu)的強(qiáng)度,完善前置深松部件的設(shè)計(jì)。
[Abstract]:Soil deep loosening technology, as an important part of tillage technology, can break the plow bottom which is produced by traditional traditional farming methods, effectively improve the soil structure and promote the growth of crops. At present, the deep loosening machinery is mostly matched with the large and medium tractors by the rear suspension to carry out the operation. It is more than 2/3, but the large and medium-sized tractors are not suitable for its uneven terrain and so on. Therefore, it is very difficult to carry out deep loosening operation in Hilly and mountainous areas. In this paper, this paper analyses the preposition of the deep loosening parts, so that it can match the new cultivator and carry out deep loosening operation in Hilly and mountainous areas. This paper mainly includes The following research contents are as follows: (1) the study of the preformed deep loosening parts selects the interval deep loosening operation mode, and analyzes the operation requirements of the deep loosening machine. It is determined that the ploughing width is 1.2m, the depth of the deep loosening is 40cm, the two deep loosening shovels are arranged and the space between the shovels is 60cm. through comparison of the three kinds of common deep loosening machines, the self excited vibration type deep looser is selected as the deep loosening machine. A parallel four bar front suspension mechanism with the same trajectory is designed to determine the size of each bar in the front suspension mechanism. The self excited vibration mechanism is designed according to the principle of self excited vibration. The corresponding deep loosening shovel is designed in the light of the principle of self excited vibration. Finally, the corresponding deep loosening shovel is designed with the installation size of the frame and the requirement of deep loosening. Finally, the U is designed. G set up the front suspension frame, the three dimensional model of the self excited vibration mechanism and the deep loosening shovel, and carry out the assembly to complete the preliminary design of the preformed deep loose parts. (2) theoretical analysis of the pre suspension operation of the deep loosening parts and the theoretical analysis of the force of the deep loosening shovel and the frame in the operation. The performance, ploughing stability and longitudinal stability are analyzed. The results show that the pre suspension working parts designed in this paper meet the above requirements. Through the test and calculation, the pre suspension of the deep loose parts makes the center of gravity of the cultivator move forward 118.23mm, and the cultivator can get a greater pressure center displacement through the front and back group suspension. According to the force analysis of the whole machine during the combined operation of deep loosening rotary tillage, it is found that the pre suspension operation of the deep loose parts can increase the adhesion of the tractor, thus improve the driving force of the cutting line, further improve the traction power, traction power and traction efficiency. The numerical simulation study and static analysis lay the foundation. (3) the numerical simulation of the process of deep pine operation is taken as the sample of the soil in the dry field of the Southwestern University, and the basic parameters of the soil are measured. Based on the smooth particle hydrodynamics (SPH), an ideal model for deep loosened soil is constructed. The model is numerically simulated with ANSYS/LS-DYNA and LS-PREPOST. The simulation study shows that the maximum resistance of soil on the deep loosening shovel is 2560N, the average power consumption is 13kW, and the surface soil disturbance is small. Through numerical simulation, it can preliminarily estimate the operation effect and the power consumption of the deep loosening, and lay the foundation for the static analysis of the front suspension frame. (4) the static analysis of the front suspension frame The force of the front suspension frame is calculated by the deep loosening resistance obtained in the numerical simulation analysis. The static analysis and modal analysis of the front suspension frame are carried out by Workbench. The maximum displacement of the front suspension frame is 3.3904mm and the maximum stress is 96.63MPa, which all meet the design requirements. The natural frequency distribution of the first six orders is in 30~17 0Hz. Through static analysis, it can be found that the weak part of the frame is the bolt connection of the frame and the head of the machine. It will be used as the U type bolt connection, and the strength of the parallel four bar mechanism is improved by adding rib rib, and the design of the preformed deep loosened part is perfected.
【學(xué)位授予單位】:西南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:S222
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王景立;劉選偉;;基于有限元法的深松機(jī)機(jī)架靜力學(xué)分析[J];中國(guó)農(nóng)機(jī)化學(xué)報(bào);2015年06期
2 郝春天;周麗偉;李社潮;;機(jī)械深松技術(shù)推廣應(yīng)用成效與存在問(wèn)題[J];農(nóng)機(jī)科技推廣;2015年10期
3 劉選偉;金亮;王景立;;基于ANSYS Workbench的深松機(jī)機(jī)架模態(tài)分析[J];農(nóng)機(jī)化研究;2015年05期
4 羅生梅;劉偉;羅富方;;基于ANSYS的數(shù)控銑床床身動(dòng)態(tài)特性分析[J];自動(dòng)化與儀器儀表;2015年04期
5 袁軍;王景立;;基于SPH/FEM法的土壤深松過(guò)程仿真研究[J];安徽農(nóng)業(yè)科學(xué);2014年32期
6 姜帥琦;;農(nóng)業(yè)機(jī)械耕作阻力測(cè)試方法[J];科技風(fēng);2014年10期
7 楊立國(guó);熊波;李傳友;張莉;閆子雙;宮少俊;;深松技術(shù)可有效提高土壤蓄水保墑能力[J];農(nóng)機(jī)科技推廣;2013年05期
8 王圖展;;丘陵山區(qū)農(nóng)業(yè)機(jī)械化發(fā)展的制約因素及對(duì)策——以重慶為例[J];農(nóng)機(jī)化研究;2013年03期
9 張紹軍;;3種深松鏟對(duì)深松作業(yè)效果影響研究[J];農(nóng)業(yè)科技與裝備;2012年06期
10 田阡;鄧軍;;丘陵山區(qū)農(nóng)業(yè)機(jī)械化發(fā)展研究——重慶經(jīng)驗(yàn)[J];農(nóng)機(jī)化研究;2012年05期
相關(guān)碩士學(xué)位論文 前7條
1 張欣;多功能土壤耕作機(jī)具設(shè)計(jì)與試驗(yàn)[D];山東農(nóng)業(yè)大學(xué);2014年
2 王燕;基于離散元法的深松鏟結(jié)構(gòu)與松土效果研究[D];吉林農(nóng)業(yè)大學(xué);2014年
3 彭彬;微耕機(jī)刀輥切土動(dòng)力學(xué)建模及仿真[D];西南大學(xué);2014年
4 吳海濤;基于CATIA的深松機(jī)設(shè)計(jì)及有限元分析[D];安徽農(nóng)業(yè)大學(xué);2013年
5 龔皓暉;基于土壤力學(xué)模型的深松鏟有限元分析與結(jié)構(gòu)優(yōu)化[D];西華大學(xué);2013年
6 趙翔;全方位松耕機(jī)的研究[D];河北農(nóng)業(yè)大學(xué);2012年
7 朱留憲;基于SPH算法的微耕機(jī)旋耕刀有限元仿真與優(yōu)化[D];西南大學(xué);2012年
,本文編號(hào):1827890
本文鏈接:http://sikaile.net/shoufeilunwen/zaizhiyanjiusheng/1827890.html