灌溉渠道渠基土—混凝土襯砌凍結(jié)接觸面抗剪強(qiáng)度試驗(yàn)研究
本文選題:接觸面 + 凍結(jié) ; 參考:《山東農(nóng)業(yè)大學(xué)》2017年碩士論文
【摘要】:山東省作為中國(guó)的農(nóng)業(yè)大省,灌溉渠道遍布。同時(shí),山東處于季凍區(qū)域,冬季氣候寒冷,輸水渠道極易發(fā)生凍害破壞,而破壞往往是從襯砌開始,例如發(fā)生襯砌的滑塌、折斷、產(chǎn)生裂縫、隆起架空、表面剝落等,隨之渠道的抗?jié)B性能迅速下降,導(dǎo)致渠道滲漏而浪費(fèi)水資源。在此背景下,本文結(jié)合實(shí)際工程中的渠道襯砌破壞特點(diǎn),利用直剪儀模擬了渠道渠基土與混凝土襯砌凍結(jié)接觸面的剪切破壞過(guò)程:將取自灌區(qū)的土樣與混凝土襯砌按要求處理后分別置于上下剪切盒,經(jīng)過(guò)充分預(yù)壓、凍結(jié)后進(jìn)行剪切試驗(yàn)。通過(guò)調(diào)節(jié)土體的含水率、凍結(jié)時(shí)的溫度、凍結(jié)的時(shí)間以及剪切時(shí)的法向應(yīng)力,研究了渠基土與混凝土襯砌凍結(jié)接觸面抗剪強(qiáng)度隨不同含水率、凍結(jié)溫度、法向應(yīng)力及凍結(jié)時(shí)間等影響因素的變化規(guī)律。本文的成果主要有:(1)剪切的初始階段,接觸面存在局部剪應(yīng)力釋放現(xiàn)象,釋放量大小受土體含水率、法向應(yīng)力、凍結(jié)時(shí)間因素影響,但不受凍結(jié)溫度的影響。在本試驗(yàn)參數(shù)范圍內(nèi):土體含水率越高,釋放量越大;法向應(yīng)力越大,釋放量越大;凍結(jié)時(shí)間越長(zhǎng),釋放量越小。(2)凍結(jié)接觸面的抗剪強(qiáng)度與土體含水率、凍結(jié)溫度、法向應(yīng)力、凍結(jié)時(shí)間密切相關(guān)。在本試驗(yàn)參數(shù)范圍內(nèi),接觸面峰值抗剪強(qiáng)度隨著土體含水率、法向應(yīng)力、凍結(jié)時(shí)間的增加而增大,隨凍結(jié)溫度的降低而增大;且接觸面峰值抗剪強(qiáng)度與法向應(yīng)力、凍結(jié)時(shí)間在本試驗(yàn)參數(shù)范圍內(nèi)呈線性關(guān)系。(3)凍結(jié)接觸面的抗剪強(qiáng)度實(shí)質(zhì)上是凍土中的冰晶與混凝土襯砌接觸面之間的膠結(jié)力,以及土體與混凝土襯砌接觸面之間的黏聚力與摩擦力;而這種膠結(jié)力是土體中的水分在低溫下形成的冰晶與混凝土襯砌接觸面通過(guò)膠結(jié)作用形成的。峰值抗剪強(qiáng)度大小主要受膠結(jié)力影響;黏聚力和摩擦力主要受法向應(yīng)力、凍結(jié)時(shí)間的影響。
[Abstract]:As a big agricultural province in China, Shandong Province has many irrigation channels. At the same time, Shandong is in a seasonally frozen area, and the winter climate is cold, and the water conveyance channel is liable to be damaged by freezing, and the damage often begins with the lining, such as the collapse of the lining, the breaking of the lining, the occurrence of cracks, the uplift of the sky, the surface spalling, and so on. The impermeability of the channel decreases rapidly, which leads to the leakage of the channel and the waste of water resources. In this context, combining with the characteristics of channel lining failure in practical engineering, The shear failure process of frozen contact surface between channel foundation soil and concrete lining was simulated by means of direct shear apparatus: soil samples from irrigation area and concrete lining were treated according to requirements and placed in upper and lower shear boxes respectively, after full preloading, Shear tests were carried out after freezing. By adjusting soil moisture content, freezing temperature, freezing time and normal stress during shearing, the shear strength of frozen interface between soil and concrete lining is studied with different moisture content and freezing temperature. The change of normal stress and freezing time. The main results of this paper are as follows: (1) in the initial stage of shear, there is a phenomenon of local shear stress release at the contact surface. The amount of release is affected by soil moisture content, normal stress, freezing time, but not by freezing temperature. In the range of the test parameters: the higher the moisture content of soil, the greater the release amount; the greater the normal stress, the greater the release amount; the longer the freezing time, the smaller the release amount.) the shear strength and soil moisture content, freezing temperature, normal stress of the frozen contact surface, The freezing time is closely related. In the range of test parameters, the peak shear strength of contact surface increases with the increase of soil moisture content, normal stress and freezing time, and increases with the decrease of freezing temperature, and the peak shear strength and normal stress of contact surface increase with the increase of soil moisture content, normal stress and freezing time. The freezing time is linearly related within the range of the test parameters. (3) the shear strength of the frozen contact surface is essentially the cementing force between the ice crystal and the concrete lining interface in the frozen soil. And the cohesion and friction between soil and concrete lining contact surface, which is formed by the interface between ice crystal and concrete lining formed by water in soil at low temperature. The peak shear strength is mainly affected by the bonding force, and the cohesion and friction are mainly affected by the normal stress and freezing time.
【學(xué)位授予單位】:山東農(nóng)業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:S277
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 石泉彬;楊平;王國(guó)良;;人工凍結(jié)砂土與結(jié)構(gòu)接觸面凍結(jié)強(qiáng)度試驗(yàn)研究[J];巖石力學(xué)與工程學(xué)報(bào);2016年10期
2 趙聯(lián)楨;陳生水;楊東全;鐘啟明;張宏斌;;凍砂土-結(jié)構(gòu)接觸面恒溫循環(huán)剪切性能研究[J];水利水運(yùn)工程學(xué)報(bào);2016年01期
3 王銳;;高緯度多年凍土區(qū)地基土凍脹特性研究[J];低溫建筑技術(shù);2015年10期
4 楊勇;;混凝土襯砌板渠道凍脹非線性數(shù)值模擬[J];水利規(guī)劃與設(shè)計(jì);2015年10期
5 李存云;王紅雨;武慧芳;;凍融期內(nèi)U形渠道混凝土襯砌板下地溫分布規(guī)律[J];水利水電技術(shù);2015年09期
6 伍華方;;寒冷地區(qū)混凝土防滲渠道的凍脹問(wèn)題及施工防治措施[J];水土保持應(yīng)用技術(shù);2015年04期
7 張晨;蔡正銀;黃英豪;徐光明;任國(guó)峰;;輸水渠道凍脹離心模擬試驗(yàn)[J];巖土工程學(xué)報(bào);2016年01期
8 冷景巖;付新平;楊軍杰;;高速鐵路路基填料凍脹試驗(yàn)研究[J];冰川凍土;2015年02期
9 曾桂軍;張明義;李振萍;裴萬(wàn)勝;;飽和正凍土水分遷移及凍脹模型研究[J];巖土力學(xué);2015年04期
10 呂鵬;劉建坤;;凍土與混凝土接觸面直剪試驗(yàn)研究[J];鐵道學(xué)報(bào);2015年02期
相關(guān)碩士學(xué)位論文 前4條
1 李爽;混凝土襯砌渠道凍脹非線性數(shù)值模擬研究及結(jié)構(gòu)優(yōu)化[D];西北農(nóng)林科技大學(xué);2014年
2 李金玲;季凍區(qū)渠道邊坡凍脹防治試驗(yàn)研究[D];東北農(nóng)業(yè)大學(xué);2013年
3 于琳琳;不同人工凍結(jié)條件下土的凍脹試驗(yàn)研究[D];哈爾濱工業(yè)大學(xué);2006年
4 姜龍;季凍區(qū)公路路基粗粒土凍脹敏感性及分類研究[D];吉林大學(xué);2006年
,本文編號(hào):1818787
本文鏈接:http://sikaile.net/shoufeilunwen/zaizhiyanjiusheng/1818787.html