鈍化劑對牛糞厭氧發(fā)酵重金屬Cd、Ni、Cu含量及形態(tài)的影響
本文選題:鈍化劑 + 牛糞。 參考:《沈陽農(nóng)業(yè)大學(xué)》2017年碩士論文
【摘要】:隨著我國畜禽養(yǎng)殖業(yè)快速發(fā)展及配合飼料養(yǎng)殖法的應(yīng)用,畜禽糞便中重金屬的殘留問題日益嚴(yán)重。厭氧發(fā)酵是處理畜禽糞便的有效途徑,而鈍化劑對牛糞厭氧發(fā)酵中重金屬的影響,目前少有研究,因此希望通過本研究為重金屬污染控制及沼肥的安全利用提供理論依據(jù)。本試驗以重金屬為研究對象,以牛糞為厭氧發(fā)酵原料,添加3種不同種類不同添加比例的重金屬鈍化劑進(jìn)行厭氧發(fā)酵,通過正交試驗的方法,在試驗中選取3個因素,每個因素取3個水平;3個因素分別為溫度(3個水平分別為22℃C、28℃C、35℃C)、鈍化劑種類(3個水平分別為沸石、海泡石、鈣鎂磷肥)、鈍化劑添加比例(3個水平分別為干物質(zhì)量的5%、2.5%、7.5%),采用BCR提取法分析重金屬形態(tài),探索三種不同鈍化劑(沸石、海泡石、鈣鎂磷肥)對牛糞厭氧發(fā)酵產(chǎn)氣量、甲烷含量及重金屬形態(tài)變化的影響,以期通過本試驗研究,為沼渣沼液的安全合理利用提供科學(xué)依據(jù)。在接種物量30%、TS為10%、pH為7條件下進(jìn)行60d牛糞厭氧發(fā)酵,按L9(34)安排試驗,研究不同處理對牛糞厭氧發(fā)酵重金屬Cd、Ni、Cu含量及形態(tài)的影響,探討不同處理對牛糞厭氧發(fā)酵累積產(chǎn)氣量、平均甲烷含量、牛糞厭氧發(fā)酵對重金屬鈍化能力和有效態(tài)比例影響。通過上述的試驗研究,得出以下主要結(jié)論:(1)添加鈍化劑有利于牛糞厭氧發(fā)酵產(chǎn)氣量的增加;溫度和鈍化劑添加比例對累積產(chǎn)氣量有顯著影響,而鈍化劑種類對累積產(chǎn)氣量影響不顯著,通過分析得出容積產(chǎn)氣率最高的處理為溫度35℃條件下,添加5%海泡石的牛糞厭氧發(fā)酵處理,容積產(chǎn)氣率達(dá)到0.285m3/m3·d。添加鈍化劑有利于提高甲烷含量,且溫度越高甲烷含量越高;溫度、鈍化劑種類和鈍化劑添加比例對甲烷含量均有極顯著影響,通過分析得出甲烷含量最高的處理為35℃條件下、添加5%海泡石牛糞厭氧發(fā)酵處理,甲烷平均含量達(dá)到54.87%。(2)對于重金屬Cd,通過對比添加鈍化劑的處理、不加鈍化劑的處理(即空白處理)發(fā)現(xiàn),溫度、鈍化劑種類對重金屬Cd鈍化能力有極顯著影響,鈍化劑添加比例對重金屬Cd鈍化能力有顯著影響,通過分析得出對重金屬Cd鈍化能力最高的處理為溫度28℃C條件下,添加7.5%海泡石的牛糞厭氧發(fā)酵處理,對重金屬Cd鈍化能力達(dá)到63.27%。溫度、鈍化劑種類對重金屬Cd有效態(tài)比例有極顯著影響,鈍化劑添加比例對金屬Cd有效態(tài)比例有顯著影響,通過分析得出牛糞厭氧發(fā)酵重金屬Cd有效態(tài)比例最低的處理為,35℃C條件下,添加2.5%鈣鎂磷肥的牛糞厭氧發(fā)酵處理,重金屬Cd有效態(tài)比例為42.20%?傮w來說,添加鈍化劑有利于促使牛糞厭氧發(fā)酵重金屬Cd趨向無害,重金屬Cd主要富集在沼渣中,沼渣中Cd比例在52.04%-75.64%之間。(3)對于重金屬Ni,通過對比添加鈍化劑的處理、不加鈍化劑的處理(即空白處理)發(fā)現(xiàn),溫度、鈍化劑種類對重金屬Ni鈍化能力有極顯著影響,而鈍化劑添加比例對重金屬Ni鈍化能力影響不顯著,通過分析得出重金屬Ni鈍化能力最高的處理為35℃條件下,添加5%海泡石的牛糞厭氧發(fā)酵處理,對重金屬Ni鈍化能力達(dá)到45.76%。溫度、鈍化劑添加比例對重金屬Ni有效態(tài)比例有顯著影響,而鈍化劑種類對金屬Ni有效態(tài)比例有影響不顯著,通過分析得出牛糞厭氧發(fā)酵重金屬Ni有效態(tài)比例最低的處理為35℃條件下,添加5%海泡石的牛糞厭氧發(fā)酵處理,重金屬Ni有效態(tài)比例為45.76%。總體來說,添加鈍化劑有利于促使牛糞厭氧發(fā)酵重金屬Ni趨向無害,重金屬Ni主要富集在沼渣中,沼渣中Ni比例在58.59%-70.16%之間。(4)對于重金屬Cu,通過對比添加鈍化劑的處理、不加鈍化劑的處理(即空白處理)發(fā)現(xiàn),溫度、鈍化劑添加比例對重金屬Cu鈍化能力有極顯著影響,鈍化劑種類對重金屬Cu鈍化能力有顯著影響,通過分析得出重金屬Cu鈍化能力最高的處理為28℃條件下,添加2.5%沸石的牛糞厭氧發(fā)酵處理,對重金屬Cu鈍化能力達(dá)到60.19%。溫度、鈍化劑種類對重金屬Cu有效態(tài)比例有極顯著影響,而鈍化劑添加比例對金屬Cu有效態(tài)比例影響不顯著,通過分析得出牛糞厭氧發(fā)酵重金屬Cu有效態(tài)比例最低的處理為35℃C條件下,添加2.5%鈣鎂磷肥的牛糞厭氧發(fā)酵處理,重金屬Cu有效態(tài)比例為25.78%。總的來說,添加鈍化劑有利于促使牛糞厭氧發(fā)酵重金屬Cu趨向無害,重金屬Cu主要富集在沼渣中,沼渣中Cu比例在50.68%-62.92%之間。(5)各處理對重金屬Cd、Ni、Cu有效態(tài)鈍化效果分別為3.15%-30.73%、11.94%-76.89%、1.9%-80.99%。22℃條件下,最優(yōu)的處理為,添加5%沸石的處理對重金屬有效態(tài)鈍化效果順序為:CuNiCd。35℃條件下,較優(yōu)的處理為,添加7.5%沸石的處理和添加2.5%鈣鎂磷肥的處理,對有效態(tài)重金屬的鈍化效果順序為:CuNiCd。28℃條件下,最優(yōu)的處理為,添加2.5%沸石的處理對有效態(tài)重金屬的鈍化效果順序為:NiCuCd。
[Abstract]:With the rapid development of livestock and poultry industry in China and the application of feed breeding method, the problem of heavy metal residues in livestock and poultry manure is increasingly serious. Anaerobic fermentation is an effective way to deal with livestock and poultry manure, and the effect of passivating agent on heavy metal in anaerobic fermentation of cow dung is seldom studied. Therefore, it is hoped that this study can control the pollution of heavy metals through this study. This experiment takes the heavy metal as the research object, taking the cow dung as the anaerobic fermentation material, adding 3 kinds of different kinds of heavy metal passivating agent to anaerobic fermentation. Through the orthogonal test, 3 factors are selected in the experiment, each factor is 3 levels, and the 3 factors are temperature respectively. (3 levels are 22 C, 28 C, 35 C C), the species of passivating agent (3 levels are zeolite, sepiolite, calcium magnesium phosphate fertilizer), and the proportion of passivating agent (3 levels are 5%, 2.5%, 7.5%) of the dry matter, respectively. The BCR extraction method is used to analyze the speciation of heavy metals, and three different passivating agents (zeolite, sepiolite, calcium magnesium phosphate) are used for anaerobic fermentation of cow dung. In order to provide a scientific basis for the safe and rational utilization of biogas slurry, the effects of gas production, methane content and heavy metal morphologic changes were provided. The anaerobic fermentation of 60d cow dung was carried out under the conditions of 30% inoculation, TS 10% and pH 7, and the contents of Cd, Ni, Cu in anaerobic fermentation of cattle manure were studied by L9 (34). The effects of different treatments on the cumulative gas yield of anaerobic fermentation of cow dung, the average methane content, the effect of the anaerobic fermentation of cow dung on the passivation capacity and the effective proportion of the heavy metal were investigated. The following main conclusions were obtained: (1) the addition of passivating agent was beneficial to the increase of the anaerobic fermentation of cow dung, and the addition of temperature and passivating agent. The ratio has a significant effect on the cumulative gas production, while the effect of the passivating agent on the cumulative gas production is not significant. Through the analysis, the treatment of the highest volume gas production rate is that the anaerobic fermentation of cow dung with 5% sepiolite is added under the condition of 35 degrees centigrade. The volume gas production rate is 0.285m3/m3. D. adding passivating agent is beneficial to increase the methane content, and the more the temperature is, the more the temperature is, the more the temperature is, the more the temperature is, the more the temperature is, the more the temperature is, the more the temperature is, the more the temperature is, the more the temperature is, the more the temperature is, the more the temperature is, the more the temperature is, the more the temperature is, the more the temperature is, the more the temperature is, the more the temperature is, the more the temperature is, the more the temperature is, the more the temperature is, the more the temperature is The higher the content of the methanane, the temperature, the type of passivating agent and the proportion of the passivating agent have great influence on the methane content. Through the analysis, the anaerobic fermentation of 5% sepiolite cow dung is added to the treatment of the highest methane content at 35. The average methane content is 54.87%. (2) to the heavy metal Cd, and the treatment of the passivating agent is added by contrast. Without the treatment of passivating agent (blank treatment), it is found that temperature and passivating agent have a significant effect on the passivation ability of heavy metal Cd, and the ratio of passivating agent has a significant influence on the passivation ability of heavy metal Cd. The treatment of the highest passivation ability of heavy metal Cd is that the anaerobic hair of cow dung adding 7.5% sepiolite is added to the temperature of 28 degrees C. The passivation capacity of heavy metal Cd reached 63.27%. temperature, and the species of passivating agent had a significant effect on the ratio of effective state of heavy metal Cd, and the proportion of passivating agent had a significant influence on the ratio of effective state of metal Cd. Through analysis, the treatment of the lowest effective proportion of heavy metal Cd in the anaerobic fermentation of cow dung was the addition of 2.5% calcium, magnesium and phosphorus under the condition of 35 C C. In the anaerobic fermentation of manure, the effective proportion of heavy metal Cd is 42.20%., and the addition of passivating agent is beneficial to the harmless heavy metal Cd in the anaerobic fermentation of cow dung, and the heavy metal Cd is mainly enriched in the biogas residue, and the proportion of Cd in the biogas residue is between 52.04%-75.64%. (3) the heavy gold belongs to Ni, and the passivating agent is not passivated by the treatment of the addition of passivating agent. The treatment (blank treatment) found that temperature and passivating agent have significant influence on the passivation ability of heavy metal Ni, while the proportion of passivating agent has no significant influence on the passivation ability of heavy metal Ni. The treatment of the highest passivation ability of heavy metal Ni is that the anaerobic fermentation of cow dung adding 5% sepiolite is treated under the condition of 35 degrees. The passivation capacity of Ni reached 45.76%. temperature, and the proportion of passivating agent had a significant effect on the effective state ratio of heavy metal Ni, while the species of passivating agent had no significant influence on the ratio of effective state of metal Ni. Through analysis, the treatment of the lowest effective proportion of heavy metal Ni in the anaerobic fermentation of cattle manure was 35 C, and 5% sepiolite was added to the anaerobic fermentation of cow dung. Treatment, the effective state ratio of heavy metal Ni is 45.76%. overall, the addition of passivating agent is beneficial to the harmless heavy metal Ni in the anaerobic fermentation of cow dung, and the heavy metal Ni is mainly enriched in the biogas residue, and the proportion of Ni in the biogas residue is between 58.59%-70.16%. (4) the treatment of heavy metal Cu, by contrast with the treatment of adding passivating agent, is not treated with the passivating agent (i.e. blank place). It is found that temperature and addition ratio of passivating agent have a significant effect on the passivation ability of heavy metal Cu. Passivating agent has a significant influence on the passivation ability of heavy metal Cu. Through analysis, the treatment of the highest passivation ability of heavy metal Cu is 28 C, adding 2.5% zeolite to oxy fermentation of cow dung, and the passivation ability of heavy metal Cu to 60.19%. Temperature, the type of passivating agent has a very significant influence on the effective state ratio of heavy metal Cu, while the proportion of passivating agent has no significant influence on the Cu effective proportion of metal. Through analysis, it is concluded that the lowest effective proportion of heavy metal Cu in the anaerobic fermentation of cow dung is 35 centigrade C, and 2.5% calcium magnesium phosphate fertilizer is added to the anaerobic fermentation of cow dung, and the heavy metal Cu is effective. As a result of 25.78%., the addition of passivating agent is beneficial to the harmless heavy metal Cu in the anaerobic fermentation of cow dung, and the heavy metal Cu is mainly concentrated in the biogas residue, and the proportion of Cu in the biogas slag is 50.68%-62.92%. (5) the effective passivation effect of each treatment on heavy metals Cd, Ni and Cu is 3.15%-30.73%, 11.94%-76.89%, 1.9%-80.99%.22, respectively. The optimal treatment was that the effective passivation effect of adding 5% zeolite to the effective state of heavy metals was as follows: under the condition of CuNiCd.35 C, the better treatment was, the treatment of adding 7.5% zeolite and the treatment of adding 2.5% calcium magnesium phosphate fertilizer, the order of passivation effect to the effective heavy metals was as follows: the optimal treatment was at the condition of CuNiCd.28 C, and the treatment of adding 2.5% zeolite was the best treatment. The effective order of the passivation effect of the active heavy metals is: NiCuCd.
【學(xué)位授予單位】:沈陽農(nóng)業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:S216.4
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 郭亮;馬傳杰;花日茂;;溫度對畜禽糞便厭氧發(fā)酵影響的研究現(xiàn)狀[J];當(dāng)代畜牧;2008年09期
2 徐衛(wèi)佳;用厭氧發(fā)酵技術(shù)處理農(nóng)村養(yǎng)殖場畜禽糞便[J];可再生能源;2004年01期
3 李文哲;公維佳;;固體有機(jī)廢棄物厭氧發(fā)酵反應(yīng)器微生物載體選擇研究[J];農(nóng)業(yè)工程學(xué)報;2006年S1期
4 夏吉慶;李文哲;李惠強(qiáng);;牛糞厭氧發(fā)酵的載體篩選試驗研究[J];環(huán)境工程學(xué)報;2008年10期
5 寧桂興;申歡;文一波;王凱;李天增;;農(nóng)作物秸稈干式厭氧發(fā)酵實(shí)驗研究[J];環(huán)境工程學(xué)報;2009年06期
6 陳智遠(yuǎn);蔡昌達(dá);石東偉;;不同溫度對畜禽糞便厭氧發(fā)酵的影響[J];貴州農(nóng)業(yè)科學(xué);2009年12期
7 王許濤;劉麗莎;張百良;;蒸汽爆破預(yù)處理技術(shù)應(yīng)用于秸稈厭氧發(fā)酵的技術(shù)經(jīng)濟(jì)分析[J];可再生能源;2010年02期
8 周瑋;董保成;齊岳;;不同處理秸稈中溫厭氧發(fā)酵的產(chǎn)氣效果[J];中國沼氣;2010年03期
9 楊立;張婷;龔乃超;李紅麗;;稀堿法預(yù)處理對秸稈厭氧發(fā)酵產(chǎn)氣的影響研究[J];安徽農(nóng)業(yè)科學(xué);2011年15期
10 馬文瑞;王惠生;張燕;王清;趙輝;;沖廁沼液曝氧法除臭對厭氧發(fā)酵產(chǎn)氣的影響[J];西北農(nóng)業(yè)學(xué)報;2012年03期
相關(guān)會議論文 前10條
1 羅艷;陳廣銀;羅興章;鄭正;鄭斌國;方彩霞;;篁竹草厭氧發(fā)酵產(chǎn)氣特性及結(jié)構(gòu)變化研究[A];2010中國環(huán)境科學(xué)學(xué)會學(xué)術(shù)年會論文集(第四卷)[C];2010年
2 錢午巧;包武;陳彪;林代炎;盧濟(jì)事;;利用厭氧發(fā)酵技術(shù)綜合治理畜牧業(yè)污染的探討[A];福建省科協(xié)第三屆學(xué)術(shù)年會“能源可持續(xù)發(fā)展”研討會論文專輯[C];2003年
3 何光設(shè);蔣恩臣;;厭氧發(fā)酵過程數(shù)學(xué)模型研究[A];農(nóng)業(yè)工程科技創(chuàng)新與建設(shè)現(xiàn)代農(nóng)業(yè)——2005年中國農(nóng)業(yè)工程學(xué)會學(xué)術(shù)年會論文集第四分冊[C];2005年
4 雷宇;馬煜;劉士清;張無敵;尹芳;徐銳;李建昌;陳玉保;;寵物狗糞便厭氧發(fā)酵試驗研究[A];2011年中國沼氣學(xué)會學(xué)術(shù)年會暨第八屆理事會第二次會議論文集[C];2011年
5 常國璋;席新明;郭康權(quán);楊秀生;;不同原料配比對餐飲廢棄物高溫厭氧發(fā)酵的影響[A];中國農(nóng)業(yè)工程學(xué)會2011年學(xué)術(shù)年會論文集[C];2011年
6 唐蓉;;煙草廢棄物高溫干式厭氧發(fā)酵的中試研究[A];中國農(nóng)業(yè)工程學(xué)會2011年學(xué)術(shù)年會(CSAE 2011)論文摘要集[C];2011年
7 錢午巧;包武;陳彪;林代炎;盧濟(jì)事;;利用厭氧發(fā)酵技術(shù)綜合治理畜牧業(yè)污染的探討[A];福建省農(nóng)業(yè)工程學(xué)會2004年學(xué)術(shù)年會紀(jì)念學(xué)會建會20周年論文匯編[C];2004年
8 劉丹;李文哲;;兩相厭氧發(fā)酵工藝的研究[A];2007年中國農(nóng)業(yè)工程學(xué)會學(xué)術(shù)年會論文摘要集[C];2007年
9 龐小平;牛明芬;王賽月;王昊;;農(nóng)作物秸稈厭氧發(fā)酵影響因素探討[A];科技創(chuàng)新與產(chǎn)業(yè)發(fā)展(A卷)——第七屆沈陽科學(xué)學(xué)術(shù)年會暨渾南高新技術(shù)產(chǎn)業(yè)發(fā)展論壇文集[C];2010年
10 王陽;林聰;韓艷霄;程東林;;早熟禾厭氧發(fā)酵產(chǎn)氣研究[A];2011年中國沼氣學(xué)會學(xué)術(shù)年會暨第八屆理事會第二次會議論文集[C];2011年
相關(guān)重要報紙文章 前10條
1 平衛(wèi)東;南豐生豬污物“厭氧發(fā)酵”環(huán)保又經(jīng)濟(jì)[N];撫州日報;2008年
2 記者 胡左;我首條垃圾聯(lián)合厭氧發(fā)酵生產(chǎn)線運(yùn)行[N];科技日報;2009年
3 張繼東;城市生物質(zhì)垃圾聯(lián)合厭氧發(fā)酵工藝在東勝區(qū)實(shí)現(xiàn)工廠化生產(chǎn)[N];鄂爾多斯日報;2010年
4 錢伯章;秸稈厭氧發(fā)酵制氫產(chǎn)氣量提高[N];中國化工報;2009年
5 尚東 編譯;厭氧發(fā)酵:城市垃圾處理新方法[N];中國房地產(chǎn)報;2006年
6 史曉龍;國家?钪С洲r(nóng)業(yè)固體廢棄物轉(zhuǎn)化研究[N];中國稅務(wù)報;2007年
7 本報記者 李曉巖;專家勾勒生物基化學(xué)品路線圖[N];中國化工報;2006年
8 記者 陳紅陽 特約通訊員 吳閣瑋;我市可望實(shí)現(xiàn)沼氣產(chǎn)業(yè)化[N];湛江日報;2009年
9 特約記者 魏建軍;循環(huán)經(jīng)濟(jì)產(chǎn)業(yè)鏈讓玉米增值6倍[N];中國化工報;2007年
10 杜杰;畜禽糞便能生產(chǎn)高效有機(jī)肥[N];中國鄉(xiāng)鎮(zhèn)企業(yè)報;2004年
相關(guān)博士學(xué)位論文 前10條
1 王明;生物質(zhì)組成成分對厭氧發(fā)酵產(chǎn)甲烷的影響[D];東北農(nóng)業(yè)大學(xué);2015年
2 董曉瑩;蔬菜廢棄物兩相厭氧發(fā)酵工藝產(chǎn)沼氣試驗研究[D];沈陽農(nóng)業(yè)大學(xué);2016年
3 梁勇;生物炭介導(dǎo)的雞糞不同溫度厭氧發(fā)酵解抑增效特性及過程建模[D];西北農(nóng)林科技大學(xué);2016年
4 孟堯;玉米秸稈厭氧發(fā)酵瘤胃仿生工藝研究[D];清華大學(xué);2016年
5 張彤;溫度和pH值調(diào)控對厭氧發(fā)酵產(chǎn)甲烷影響的研究[D];西北農(nóng)林科技大學(xué);2017年
6 孫薇;畜禽糞便厭氧發(fā)酵過程中抗生素抗性基因變化機(jī)理研究[D];西北農(nóng)林科技大學(xué);2017年
7 劉丹;餐廚廢棄物厭氧發(fā)酵特性研究[D];東北農(nóng)業(yè)大學(xué);2014年
8 張存勝;厭氧發(fā)酵技術(shù)處理餐廚垃圾產(chǎn)沼氣的研究[D];北京化工大學(xué);2013年
9 楊天學(xué);玉米秸稈干式厭氧發(fā)酵轉(zhuǎn)化機(jī)理及微生物演替規(guī)律研究[D];武漢大學(xué);2014年
10 楚莉莉;沼氣高效厭氧發(fā)酵的條件及產(chǎn)氣效應(yīng)研究[D];西北農(nóng)林科技大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 劉博;基于LS-SVM的厭氧發(fā)酵過程軟測量建模研究[D];華南理工大學(xué);2015年
2 何巖;不同厭氧發(fā)酵條件對漆酶預(yù)處理秸稈產(chǎn)沼氣的影響研究[D];東北林業(yè)大學(xué);2015年
3 潘洪加;土霉素對厭氧發(fā)酵過程古菌群落及抗性基因的影響[D];西北農(nóng)林科技大學(xué);2015年
4 程俊偉;不同餐廚泔水生物質(zhì)垃圾沉降性能及厭氧發(fā)酵試驗研究[D];西南交通大學(xué);2015年
5 段彥芳;中溫混合厭氧發(fā)酵產(chǎn)沼氣影響條件分析及優(yōu)化[D];哈爾濱工業(yè)大學(xué);2015年
6 白曉磊;鱘魚養(yǎng)殖尾水栽培微藻及其兩相厭氧發(fā)酵產(chǎn)沼氣工藝研究[D];大連海洋大學(xué);2015年
7 毛春蘭;不同底物濃度下初始pH值影響厭氧發(fā)酵效果的研究[D];西北農(nóng)林科技大學(xué);2015年
8 劉琳琳;兩種礦物添加劑對不同底物厭氧發(fā)酵特性影響研究[D];西北農(nóng)林科技大學(xué);2015年
9 馬吉龍;基于CFD的厭氧發(fā)酵攪拌技術(shù)研究[D];東北農(nóng)業(yè)大學(xué);2015年
10 張文婷;廢棄臍橙厭氧發(fā)酵產(chǎn)沼技術(shù)研究[D];南昌大學(xué);2013年
,本文編號:1802315
本文鏈接:http://sikaile.net/shoufeilunwen/zaizhiyanjiusheng/1802315.html