吉林省7種常見室內(nèi)植物固碳釋氧、釋水吸熱能力研究
本文選題:室內(nèi)植物 切入點(diǎn):季節(jié) 出處:《北華大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:在不同的室內(nèi)環(huán)境中,室內(nèi)植物通過光合作用、蒸騰作用能有效發(fā)揮其最大生態(tài)效益,合理的選擇功能性最優(yōu)植物也是室內(nèi)環(huán)境改善有效途徑之一。本文以吉林省常見的7種室內(nèi)綠色植物白鶴芋(Spathiphyllum kochii Engl.K.Krause)、常春藤(Hedera nepalensis var.sinensis(Tobl.)Rehd)、圓葉椒草(豆瓣綠)(Peperomia obtusifolia A.Dietr)、馬拉巴栗(發(fā)財(cái)樹)(Pachira macrocarpa Walp.)、富貴竹(Dracaena sanderiana Sander)、孔雀竹芋(Calathea makoyana E.Morr)、梔子(Gardenia jasminoides Ellis)為實(shí)驗(yàn)材料,應(yīng)用單因素分析法和聚類分析法,對不同植物在不同季節(jié)的固碳釋氧、釋水吸熱量結(jié)果進(jìn)行比較分析,以期為調(diào)節(jié)室內(nèi)環(huán)境質(zhì)量選擇最佳植物。結(jié)果表明:1.不同植物間的固碳釋氧能力、釋水吸熱能力不同,即便是同種植物在不同季節(jié)的固碳釋氧能力、蒸騰釋水吸熱能力也存在差異。因此,在不同室內(nèi)空間的植物設(shè)計(jì)中,選擇適宜的功能植物具有重要意義。合理配置功能植物是改善室內(nèi)環(huán)境的重要途徑之一。2.固碳釋氧能力:針對供試植物實(shí)驗(yàn)研究表明,在室內(nèi)栽培條件下固碳釋氧能力最強(qiáng)的是梔子和馬拉巴栗,年均固碳量高于1.5g.m~(-2).d~(-1)、年均釋氧量高1.2g.m~(-2).d~(-1);白鶴芋、富貴竹固碳釋氧能力中等,年均固碳量1.02g.m~(-2).d~(-1)~1.03g.m~(-2).d~(-1)、年均釋氧量0.74g.m~(-2).d~(-1)~0.75g.m~(-2).d~(-1);孔雀竹芋固碳釋氧能力最弱,年均固碳量在0.75g.m~(-2).d~(-1)以下、釋氧量在0.54g.m~(-2).d~(-1)以下。所有供試植物表現(xiàn)一致的是:冬季固碳釋氧量最高。梔子、馬拉巴栗固碳釋氧最低的季節(jié)均是夏季,冬季較夏季固碳量分別高出1.84倍和3.25倍,釋氧量分別高出1.84倍和3.26倍;孔雀竹芋固碳釋氧最低的季節(jié)是春季,冬季較春季固碳量、釋氧量分別高出6.96和7.31倍。3.釋水吸熱能力:通過相關(guān)實(shí)驗(yàn)研究表明,梔子和馬拉巴栗的釋水吸熱能力依然最強(qiáng),此外白鶴芋能力也相對較強(qiáng),年均釋水量超過1560g.m~(-2).d~(-1)以上、年吸熱量超過3800KJ.m~(-2).d~(-1)以上;富貴竹的釋水吸熱能力較中等,年均釋水量在921.44g.m~(-2).d~(-1)、年均吸熱量2250.55KJ.m~(-2).d~(-1);常春藤、圓葉椒草、孔雀竹芋釋水吸熱能力較弱,年均釋水量在350g.m~(-2).d~(-1)~620g.m~(-2).d~(-1)、年均吸熱量860KJ.m~(-2).d~(-1)~1515KJ.m~(-2).d~(-1)。供試植物在冬季釋水吸熱量較低,在春夏季相對較高。4.通過對影響植物光合、蒸騰作用的主要生理指標(biāo)相關(guān)性分析表明,不同季節(jié)所有供試植物光合速率與蒸騰速率之間均存在顯著或極顯著關(guān)系。而氣孔導(dǎo)度與兩者之間亦存在顯著相關(guān)關(guān)系,是影響光合、蒸騰速率的主要因素。
[Abstract]:In different indoor environments, indoor plants can effectively exert their maximum ecological benefits through photosynthesis and transpiration. It is also one of the effective ways to improve the indoor environment by reasonably selecting the best plants of function. In this paper, seven common indoor green plants, Spathiphyllum kochii Engl.K. Krauseus, Hedera nepalensis var. sinensis Tobl.Rehdr, Peperomia obtusifolia A. Dietrus, Malabar. Chestnut (Pachira macrocarpa Walp.Li, Dracaena sanderiana Sandera, Calathea makoyana E. Morrus, Gardenia jasminoides Ellis. jasminoides) were used as experimental materials. Single factor analysis and cluster analysis were used to compare and analyze the results of carbon sequestration and heat absorption of different plants in different seasons. The results showed that the ability of carbon sequestration and heat release was different among different plants, even the carbon sequestration and oxygen release ability of the same plant in different seasons. There are also differences in the heat absorption capacity of transpiration and water release. Therefore, in the plant design of different indoor spaces, It is of great significance to select suitable functional plants. Rational allocation of functional plants is one of the important ways to improve the indoor environment. 2. The ability of carbon sequestration and oxygen release. Under the condition of indoor cultivation, Gardenia jasminoides and Malaba chestnut had the strongest carbon sequestration capacity, the average annual carbon sequestration capacity was higher than 1.5 g 路m ~ (-1) ~ (-1), the annual oxygen release capacity was 1.2 g 路m ~ (-1) ~ (-2) C ~ (2) C ~ (-1), and the ability of white crane taro was medium. The average annual carbon sequestration capacity is 1.02g 路m ~ (-1) ~ (-1). The average annual oxygen release is 0.74 g 路m ~ (-1) ~ (-2). The average annual oxygen release is 0.74 g 路m ~ (-1) ~ (-2) 路m ~ (-1). The ability of carbon sequestration is the weakest, the annual carbon sequestration capacity is below 0.75 g 路m ~ (-1) and the oxygen release is below 0.54 g 路m ~ (-2) 路d ~ (-1). All the tested plants have the same ability of carbon sequestration and oxygen release in winter, which is the highest in winter, and the highest in winter, and the highest in winter, the highest carbon sequestration is observed in all the tested plants, and the highest carbon sequestration capacity is found in winter, and the average annual carbon sequestration capacity is less than 0.75 g 路m ~ (-1) and 0.54 g 路m ~ (-1) 路d ~ (-1). The lowest season of carbon and oxygen release from Malaba is summer, and the carbon sequestration in winter is 1.84 times and 3.25 times higher than that in summer, and the oxygen release is 1.84 and 3.26 times higher than that in summer, respectively, while the lowest season for carbon and oxygen release in Peacock is spring, and the carbon sequestration in winter is higher than that in spring. The oxygen release capacity was 6.96 and 7.31 times higher than that of 6.96 and 7.31 times respectively. The experimental results showed that Gardenia jasminoides and Malaba chestnut still had the strongest water release and heat absorption capacity, and that the average annual water release of Gardenia jasminoides var. jasminoides was higher than 1560g / kg / year. The annual endothermic capacity of Phyllostachys nobilis is more than 3800KJ. mechnian.dc-1); the average annual water release capacity of Phyllostachys nobilis is 921.44 g / m ~ (-1). The annual heat absorption capacity is 2250.55 KJ 路mGG ~ (-2) 路d-1 ~ (-1); the annual heat absorption capacity of Phyllostachys lucifera is low, and the water and heat absorption capacity of phyllostachys lucifera is weak, and the annual heat absorption capacity of Phyllostachys oleifera is relatively low. The average annual water release is at 350 g 路m ~ (-1) ~ (-1) ~ 620g 路m ~ (-1) ~ (-1) ~ 620g 路m ~ (-1) ~ (-1), and the average annual heat absorption is 860KJ 路m ~ (-1). The correlation analysis of the main physiological indexes of the effects on photosynthesis and transpiration shows that the water and heat absorption of the tested plants is low in winter and relatively high in spring and summer, and the correlation analysis of the main physiological indexes influencing the photosynthesis and transpiration of the plants shows that the main physiological indexes of the plants in the experiment are lower in winter and higher in the spring and summer. The results show that the main physiological indexes affecting the photosynthesis and transpiration of the plants are as follows:. There was a significant or extremely significant relationship between photosynthesis rate and transpiration rate in all the tested plants in different seasons, and there was also a significant correlation between stomatal conductance and transpiration rate, which was the main factor affecting photosynthesis and transpiration rate.
【學(xué)位授予單位】:北華大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:S688
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 孟占功;李華娟;張興興;;長春市6種綠化樹種固碳釋氧價(jià)值核算[J];吉林蔬菜;2012年08期
2 王巨斌;沈陽市街路綠化固碳釋氧效益分析[J];遼寧師專學(xué)報(bào)(自然科學(xué)版);2004年03期
3 韓煥金;城市綠化植物的固碳釋氧效應(yīng)[J];東北林業(yè)大學(xué)學(xué)報(bào);2005年05期
4 郭阿君;岳樺;王志英;;不同室內(nèi)光環(huán)境對植物固碳釋氧的影響[J];林業(yè)勘查設(shè)計(jì);2007年03期
5 徐瑋瑋;李曉儲(chǔ);汪成忠;何小弟;陸建飛;黃利斌;;揚(yáng)州古運(yùn)河風(fēng)光帶綠地樹種固碳釋氧效應(yīng)初步研究[J];浙江林學(xué)院學(xué)報(bào);2007年05期
6 劉大衛(wèi);殷鳴放;楊森;劉云茹;趙林;吳建軍;王洪林;;遼寧東部山區(qū)森林固碳釋氧量計(jì)量分析[J];林業(yè)科技開發(fā);2008年05期
7 唐萬鵬;史玉虎;潘磊;王曉榮;王珠娜;;湖北省天然林保護(hù)工程森林固碳釋氧效益初探[J];湖北林業(yè)科技;2011年04期
8 吳浩;王志杰;韋明月;王大偉;;淅川縣國家重點(diǎn)公益林固碳釋氧功能價(jià)值測算及分析[J];河北農(nóng)業(yè)科學(xué);2012年04期
9 董延梅;章銀柯;郭超;周麗麗;;杭州西湖風(fēng)景名勝區(qū)10種園林樹種固碳釋氧效益研究[J];西北林學(xué)院學(xué)報(bào);2013年04期
10 饒日光;張琳;王照利;申永濤;;陜西省退耕還林工程固碳釋氧服務(wù)功能評價(jià)[J];西北林學(xué)院學(xué)報(bào);2013年04期
相關(guān)會(huì)議論文 前6條
1 燕楠;王冬梅;寧月勝;史常青;;退耕還林固碳釋氧效應(yīng)初探[A];中國北方退耕還林工程建設(shè)管理與效益評價(jià)實(shí)踐[C];2008年
2 范怡雯;喻理飛;;草海流域優(yōu)勢樹種碳酸酐酶與固碳釋氧關(guān)系研究[A];第十五屆中國科協(xié)年會(huì)第19分會(huì)場:中國西部生態(tài)林業(yè)和民生林業(yè)與科技創(chuàng)新學(xué)術(shù)研討會(huì)論文集[C];2013年
3 代巍;郭小平;王曉寧;彭海燕;史曉麗;;G101北京段公路綠化的固碳釋氧研究[A];全國公路生態(tài)綠化理論與技術(shù)研討會(huì)論文集[C];2009年
4 肖建武;康文星;尹少華;謝欣榮;;長沙市城市森林固碳釋氧功能價(jià)值評估[A];《兩型社會(huì)建設(shè)與湖南管理創(chuàng)新》論壇論文集[C];2008年
5 王麗勉;秦俊;胡永紅;高凱;黃娟;;上海地區(qū)151種綠化植物固碳釋氧能力的研究[A];2007中國植物生理學(xué)會(huì)全國學(xué)術(shù)會(huì)議論文摘要匯編[C];2007年
6 王春紅;鄧華鋒;;森林生態(tài)系統(tǒng)服務(wù)功能及其價(jià)值評價(jià)的研究[A];第十三屆中國科協(xié)年會(huì)第16分會(huì)場-沿海生態(tài)建設(shè)與城鄉(xiāng)人居環(huán)境學(xué)術(shù)研討會(huì)論文集[C];2011年
相關(guān)重要報(bào)紙文章 前4條
1 本報(bào)記者 朱邪;我省森林生態(tài)服務(wù)功能價(jià)值年超4000億元[N];貴州日報(bào);2012年
2 通訊員 黃鈺 汪杰;貴州森林生態(tài)服務(wù)功能價(jià)值逾4000億元[N];中國綠色時(shí)報(bào);2012年
3 記者 李凌翌;我市森林生態(tài)服務(wù)價(jià)值每年達(dá)256億元[N];成都日報(bào);2010年
4 本報(bào)記者 朱邪;4275億! 重新認(rèn)識(shí)森林價(jià)值[N];貴州日報(bào);2012年
相關(guān)碩士學(xué)位論文 前10條
1 劉瑞文;樹冠微環(huán)境與固碳釋氧和增濕降溫生態(tài)效益的研究[D];吉林農(nóng)業(yè)大學(xué);2015年
2 吳騰飛;南縣森林生態(tài)系統(tǒng)服務(wù)功能價(jià)值評估[D];中南林業(yè)科技大學(xué);2015年
3 羅蔚生;廣西大瑤山國家級自然保護(hù)區(qū)森林生態(tài)服務(wù)功能評估及補(bǔ)償問題探討[D];廣西大學(xué);2014年
4 王芳;基于葉面積指數(shù)的群落固碳釋氧和降溫增濕功能研究[D];華中農(nóng)業(yè)大學(xué);2013年
5 賈婷婷;吉林省7種常見室內(nèi)植物固碳釋氧、釋水吸熱能力研究[D];北華大學(xué);2017年
6 楊清;煤礦復(fù)墾區(qū)綠化樹種固碳釋氧、降溫增濕效應(yīng)研究[D];安徽理工大學(xué);2013年
7 田卓林;大連市森林生態(tài)系統(tǒng)服務(wù)功能價(jià)值評價(jià)[D];遼寧師范大學(xué);2010年
8 教勇;長沙市重點(diǎn)公益林規(guī)劃及生態(tài)服務(wù)功能價(jià)值評價(jià)[D];中南林業(yè)科技大學(xué);2013年
9 汪成忠;上海八種園林樹木生態(tài)功能比較研究[D];東北林業(yè)大學(xué);2009年
10 代巍;G101北京段公路綠化的溫濕度調(diào)節(jié)及固碳釋氧研究[D];北京林業(yè)大學(xué);2009年
,本文編號(hào):1622190
本文鏈接:http://sikaile.net/shoufeilunwen/zaizhiyanjiusheng/1622190.html