納米靶向遞藥系統(tǒng)AS1411-PLGA-DOX的構(gòu)建及其對腦膠質(zhì)瘤的治療作用與機制研究
[Abstract]:Background: malignant tumors have brought serious harm to human health and social development. Because of the aggressive growth of the tumor, the operation is difficult to completely eradicate, combined with radiotherapy, chemotherapy has great toxic side effects, so it is urgent to find the best method of comprehensive treatment of tumor. With the cross-fusion of materials science, biomedicine and nano-science, nano-targeted preparations have attracted more and more attention. Nano-targeted drug delivery system is a hot research topic at present. It has the characteristics of targeting, improving drug stability and slow release. Polylactic acid-glycolic acid (PLGA) copolymers have been widely used in drug delivery systems due to their good biocompatibility, low toxicity and degradability. Doxorubicin hydrochloride (doxorubicin), also known as doxorubicin, has a significant inhibitory effect on many kinds of tumors, but its adverse reactions, such as bone marrow suppression and heart injury, have become the bottleneck of DOX in the treatment of tumors. Nucleic acid aptamer (AS1411) has many advantages, such as specific target binding ability, easy penetration of tumor tissue, easy modification in vitro, and specific binding to nucleolar protein (C23) in order to play its important role in anti-tumor. C23 is a apoptosis-related protein. P38 mitogen-activated protein kinase (p38MAPK) plays an important role in the process of cell apoptosis. Objective: in this study, DOX was used as an anti-glioma drug and PLGA as a nano-carrier, AS1411 was coupled to PLGA nanospheres in order to form a nano-targeted delivery drug system (AS1411-PLGA-DOX,) to play its specific role in targeting glioma. The molecular mechanism of its anti-glioma action was further clarified. Methods: AS1411-PLGA-DOX was prepared by solvent volatilization and carbodiimide two-step condensation reaction, and characterized. The effects of AS1411-PLGA-DOX on glioma were confirmed in vivo and in vitro. Based on the molecular mechanism of tumor apoptosis, the intrinsic molecular mechanism of AS1411-PLGA-DOX antiglioma was studied. Results: 1. AS1411-PLGA-DOX was spherical, the size (245 鹵42.6nm) was more regular and the surface was smooth, the polydispersity coefficient was 0.212 鹵0.023, the potential was -36.2 鹵1.8mVN LC1.72 鹵0.06CV% was 88.1 鹵4.7%, the in vitro release rate was 47.7 鹵3.9.% (pH=7.4) 57.0 鹵4.6% (pH=5), the results showed the characteristic of pH responsive release. The hemolysis rate was 0.244% to show good biological description. At the same time, the fluorescence intensity of AS1411-PLGA-DOX was significantly higher than that of PLGA-DOX,. The results of cell quantitative localization showed that AS1411-PLGA-DOX was targeted to some extent. In vitro experiments showed that AS1411-PLGA-DOX inhibited U87 cell growth in a concentration-dependent manner and could block the cells in G _ 2 / MN _ S phase. The mechanism of inhibition might be related to the activation of p38MAPK channel by AS1411-PLGA-DOX, upregulation of p38 expression and down-regulation of the expression of C23 ~ (23) Bcl-2O _ (Bcl-XL) in U87 cells. In vivo experiments showed that AS1411-PLGA-DOX could inhibit the tumor growth and prolong the survival time of nude mice bearing subcutaneous tumor, and its further molecular biological mechanism was consistent with the cell experiment. Conclusion: AS1411-PLGA-DOX, with targeting effect has been successfully constructed in this study. The results in vitro and in vivo indicate that AS1411-PLGA-DOX is a promising nanometer preparation for the inhibition of glioma. The mechanism may activate the p38 apoptosis signal pathway, resulting in the up-regulation of p38 protein expression and the down-regulation of C23Bcl-2Bcl-XL protein.
【學位授予單位】:南方醫(yī)科大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:R943;R96
【相似文獻】
相關期刊論文 前10條
1 黃瑩瑩;;Biodegradable Polylactide-co-glycolide (PLGA) Thin Films Prepared by Electrospray and Pressurized Spray Deposition[J];Journal of Wuhan University of Technology-Materials Science;2005年S1期
2 王志清;劉衛(wèi);徐輝碧;楊祥良;;載三氧化二砷的PEG-PLGA隱性納米粒的制備及體外研究(英文)[J];Chinese Journal of Chemical Engineering;2007年06期
3 ;Effect of Excipients on Stability and Structure of rhCuZn-SOD Encapsulated in PLGA Microspheres[J];Chemical Research in Chinese Universities;2004年03期
4 郭曉東;;Surface Modification of Biomimetic PLGA-(ASP-PEG) Matrix with RGD-Containing Peptide:a New Non-Viral Vector for Gene Transfer and Tissue Engineering[J];Journal of Wuhan University of Technology(Materials Science Edition);2006年03期
5 陳劍;樊新;周忠誠;阮建明;;PLGA材料仿生改性的最新進展[J];粉末冶金材料科學與工程;2008年06期
6 ;Preparation and mineralization of PLGA/Gt electrospun fiber mats[J];Chinese Science Bulletin;2009年08期
7 李雙燕;;PLGA組織工程支架材料的研究與展望[J];國外絲綢;2009年02期
8 郝杰;鄭啟新;;Biomineralization of the Surface of PLGA-(ASP-PEG) Modified with the K_(16) and RGD-containing Peptide[J];Journal of Wuhan University of Technology(Materials Science Edition);2009年05期
9 ;Preparation of Tolterodine Metabolite Loaded Biodegradable PLGA Microspheres[J];Chemical Research in Chinese Universities;2010年01期
10 ;Comparison of BSA Release Behavior from Electrospun PLGA and PLGA/Chitosan Membranes[J];Chemical Research in Chinese Universities;2011年04期
相關會議論文 前10條
1 鄭強;潘志軍;薛德挺;李杭;李建兵;;納米PLGA/HA復合物和骨髓基質(zhì)干細胞在軟骨修復中的應用[A];2009年浙江省骨科學學術(shù)年會論文匯編[C];2009年
2 王漢杰;蘇文雅;廖振宇;王生;常津;;PLGA/Liposome核殼納米粒子的制備[A];天津市生物醫(yī)學工程學會第30次學術(shù)年會暨生物醫(yī)學工程前沿科學研討會論文集[C];2010年
3 王光林;吳輝;;聯(lián)合靜電紡絲法和轉(zhuǎn)筒接收法制備PLGA—膠原—絲素納米神經(jīng)導管[A];第六屆西部骨科論壇暨貴州省骨科年會論文匯編[C];2010年
4 趙潔;全大萍;廖凱榮;伍青;;含不同側(cè)氨基密度的ASP-PEG-PLGA的合成與表征[A];中國生物醫(yī)學工程學會第六次會員代表大會暨學術(shù)會議論文摘要匯編[C];2004年
5 黃艷霞;任天斌;張麗紅;呂凱歌;蔣欣泉;潘可風;任杰;;PLGA/NHA-RGD復合材料的制備及性能研究[A];2006年上海市醫(yī)用生物材料研討會論文匯編[C];2006年
6 ;Synthesis of PLGA Labeled with ~(125)I[A];2006年上海市醫(yī)用生物材料研討會論文匯編[C];2006年
7 李艷輝;崔媛;張慧敏;關秀文;;利用等離子體技術(shù)在PLGA表面固定膠原的研究[A];2011年全國高分子學術(shù)論文報告會論文摘要集[C];2011年
8 何樹;畢龍;劉建;扈剛;孟國林;董鑫;郝賦;趙軼男;;新型PLGA/HMS-HA復合微球載體支架對兔骨髓間充質(zhì)干細胞生物學行為的影響[A];中華醫(yī)學會第七次全國骨質(zhì)疏松和骨礦鹽疾病學術(shù)會議論文匯編[C];2013年
9 ;Preparation of PLGA Ultrasound Microbubble Loaded Hematoporphyrin and optimization of formulation[A];中華醫(yī)學會第十次全國超聲醫(yī)學學術(shù)會議論文匯編[C];2009年
10 李志宏;武繼民;汪鵬飛;陳學忠;黃姝杰;關靜;張西正;;BMP/PLGA緩釋微球的制備與體外釋放性能[A];第七屆中國功能材料及其應用學術(shù)會議論文集(第4分冊)[C];2010年
相關重要報紙文章 前3條
1 記者 白毅;合成溫敏型PLGA-PEG-PLGA嵌段共聚物[N];中國醫(yī)藥報;2006年
2 尹東鋒 鐘延強;聚合物 藥物 制備工藝 附加劑[N];中國醫(yī)藥報;2006年
3 李博;“人造紅細胞”[N];大眾衛(wèi)生報;2009年
相關博士學位論文 前10條
1 李玉華;載阿倫磷酸鈉PLGA微球的磷酸鈣骨水泥復合組織工程骨修復兔股骨髁骨缺損的實驗研究[D];山東大學;2015年
2 周璇;RGD靶向微泡與載藥微球在肝臟創(chuàng)傷滲血診斷和治療中的研究[D];中國人民解放軍醫(yī)學院;2015年
3 陶春;可注射鑲嵌載生長因子殼聚糖微球的PLGA多孔復合微球支架的研究[D];第二軍醫(yī)大學;2015年
4 鮑文;靶向納米載藥系統(tǒng)DNR-PLGA-PLL-PEG-Tf治療惡性血液病的體內(nèi)、體外研究[D];東南大學;2015年
5 王晨暉;裝載蛋白藥物的PCADK/PLGA混合微球研究及在重組人生長激素中的應用[D];吉林大學;2016年
6 盧明子;載血紅蛋白PEG-PLGA納米粒子的構(gòu)建、生物學作用及其靶向性能的研究[D];中國人民解放軍軍事醫(yī)學科學院;2016年
7 張皓軒;載辛伐他汀PLGA微球/磷酸鈣組織工程骨的生物相容性和成骨活性的研究[D];山東大學;2016年
8 李青;新型高效靶向ROS響應的載藥納米粒子系統(tǒng)在口腔鱗癌治療中的研究[D];山東大學;2016年
9 齊峰;粒徑均一的PLGA顆粒制備及在長效緩釋體系和Pickering乳液中的應用[D];中國科學院研究生院(過程工程研究所);2015年
10 劉苒;轉(zhuǎn)鐵蛋白修飾的新型多聚物載藥納米粒的研制及靶向逆轉(zhuǎn)白血病多藥耐藥的體外研究[D];東南大學;2015年
相關碩士學位論文 前10條
1 陽剛;復合肌腱修復材料—載細胞用防粘連性隔離/支架型PLGA膜的體外研制[D];中南大學;2010年
2 唐冠男;微流控技術(shù)原位合成多形貌PLGA/TiO_2復粒子及其體外藥物釋放的研究[D];華南理工大學;2015年
3 李文秀;形貌可控的PLGA/PCL復合粒子的制備及體外降解性能的基礎研究[D];華南理工大學;2015年
4 黃卓穎;重組人表皮生長因子PLGA納米粒經(jīng)皮治療大鼠糖尿病潰瘍的作用研究[D];福建中醫(yī)藥大學;2015年
5 聞繼杰;含胺基修飾beta-環(huán)糊精的可降解兩親性聚酯的合成及其對蛋白質(zhì)和抗癌藥物的控制釋放[D];天津理工大學;2015年
6 王翠偉;基于點擊化學制備PCL/PEG兩親性共網(wǎng)絡聚合物以及不同支臂PLGA作為疫苗載體的初步研究[D];北京協(xié)和醫(yī)學院;2015年
7 王共喜;PLA/AT納米復合材料的制備與性能及PLGA纖維的表面改性[D];復旦大學;2014年
8 劉青;植入體材料與PLGA載藥微球的復合研究[D];西南交通大學;2015年
9 張科技;蠶絲-PLGA支架的生物相容性及力學性能的研究[D];浙江省醫(yī)學科學院;2015年
10 黃曉君;關節(jié)腔注射用青藤堿-PLGA微球—溫敏凝膠的制備及評價[D];廣東藥學院;2015年
,本文編號:2243323
本文鏈接:http://sikaile.net/shoufeilunwen/yxlbs/2243323.html