基于脛骨止點纖維軟骨空間構(gòu)型的前交叉韌帶功能束劃分及力學分析研究
本文選題:前交叉韌帶 + 脛骨止點; 參考:《第三軍醫(yī)大學》2015年博士論文
【摘要】:研究背景之前對前交叉韌帶(anterior cruciate ligament,ACL)的力學和運動學研究大多是基于ACL功能束劃分基礎(chǔ)上的,其被劃分為前內(nèi)(anteromedial,AM)和后外(posterolateral,PL)束被廣泛接受。劃分的依據(jù)是膝關(guān)節(jié)運動過程中AM和PL表現(xiàn)出的不同的張力狀態(tài),以及斜矢狀位及斜冠狀位的磁共振成像(magnetic resonance imaging,MRI)表現(xiàn)。臨床上,ACL雙束重建的理論基礎(chǔ)即是此前內(nèi)和后外分束。但是,這種劃分仍然存在爭議。一些學者在尸體膝關(guān)節(jié)研究中證實ACL存在三束,另外一些學者并沒有找到ACL功能束劃分的組織學依據(jù)。同時,并不是所有的ACL都能被劃分為這兩束。并且大量的文獻研究證實ACL的解剖雙束重建的臨床療效并不強于單束重建。ACL經(jīng)過一個多種組織形成的界面結(jié)構(gòu)插入軟骨下骨,這種界面結(jié)構(gòu)促使軟組織和硬組織更好的連接,并且在關(guān)節(jié)運動中使生理負荷更有效地傳遞。ACL脛骨止點由四種明顯不同的組織組成,分別是韌帶,非鈣化纖維軟骨,鈣化纖維軟骨和骨組織。這種存在局部差異性的分為非鈣化組織和鈣化組織的界面使止點的力學特性逐漸變化,減小了應(yīng)力水平,使從韌帶到骨的力學負荷傳遞更有效。非鈣化纖維軟骨越厚,提示更大的剪切或壓縮力。鈣化纖維軟骨的厚度及和骨的接觸程度則和局部拉伸力密切正相關(guān)。對ACL脛骨止點纖維軟骨分布差異及空間構(gòu)型的深入理解有助于我們進一步探討ACL的力學性質(zhì)。為明確由ACL傳遞到骨的力學負荷分布,我們分析ACL脛骨止點纖維軟骨分布的區(qū)域性差異。通過局部非鈣化纖維軟骨的空間構(gòu)型,我們以其做為組織學依據(jù)間接的將ACL分為不同的功能束。劃分的ACL各功能束需要進行解剖位置的定位,本文擬通過數(shù)學計算軟件計算ACL各功能束的幾何中心,根據(jù)幾何中心的位置來進行定位及命名功能束。ACL做為膝關(guān)節(jié)最重要的韌帶之一,許多實驗通過體內(nèi)、體外及數(shù)字模擬的方法來研究它在維持關(guān)節(jié)穩(wěn)定性及負荷傳遞方面的功能。因為ACL復雜的解剖結(jié)構(gòu)和實驗的局限性,有限元(finite element,FE)模型能夠提供ACL許多有用的信息,而這些是很難從實體研究中獲得的。在以前的研究中,加載了簡單的負荷條件來分析acl在關(guān)節(jié)活動中的應(yīng)力分布。但acl內(nèi)部纖維束在負荷條件下精確的應(yīng)力分布仍然存在爭議。因此,本研究擬著眼于acl脛骨止點各種組織不同的力學特性來分析其內(nèi)部纖維束的應(yīng)力分布。每種止點組織在外力從acl傳遞到骨的過程中都發(fā)揮不同的作用,同時將顯著影響acl內(nèi)部纖維束的應(yīng)力分布。本研究擬建立一個真實反映acl脛骨止點幾何結(jié)構(gòu)的數(shù)字模型,并在其中填充網(wǎng)格建立止點fe模型以進行力學分析和數(shù)字模擬測試。同時,賦予止點四層結(jié)構(gòu)不同的材料屬性,設(shè)置邊界條件,加載負荷以進行有限元分析,顯示acl內(nèi)部纖維束的應(yīng)力分布。研究方法1.從本院骨組織庫中獲取膝關(guān)節(jié)標本并識別和截取acl脛骨止點。標本經(jīng)過組織學處理后,間隔50微米(micrometer,μm)進行連續(xù)橫切片,并行番紅o/固綠染色。在光鏡下觀察切片并攝片。每一張橫切片獲得數(shù)張電子圖片,用photoshop軟件進行自動拼接獲得橫切片的完整圖像。根據(jù)組織學形態(tài)和染色來區(qū)分止點四層組織包括纖維束、非鈣化纖維軟骨、鈣化纖維軟骨和軟骨下骨。用photoshop軟件手動勾描四種組織的外輪廓,并填充不同的灰度值。把經(jīng)過photoshop軟件處理的完整的灰度值圖像輸入amira軟件,用軟件進行三維重建獲得模型,不同的組織使用不同的顏色代表。通過amira軟件,止點的空間幾何構(gòu)型能夠清晰顯示。根據(jù)其空間構(gòu)型,將止點非鈣化纖維軟骨層分為不同的結(jié)構(gòu)單元,并以此劃分acl功能束。用amira軟件對每個結(jié)構(gòu)單元進行厚度測量。根據(jù)非鈣化纖維軟骨的分區(qū)同時測量鈣化纖維軟骨的厚度。對非鈣化纖維軟骨層及鈣化纖維軟骨層的各結(jié)構(gòu)單元厚度進行統(tǒng)計學檢驗,采用單因素方差分析(one-wayanalysisofvariance),p值設(shè)定為0.05。2.通過photoshop軟件制作acl脛骨止點各功能束的輪廓線圖像,利用matlab軟件計算幾何中心,依靠acl各功能束幾何中心與acl幾何中心的相對位置進行功能束的定位,計算其置信度為0.95的置信區(qū)間,并進行功能束的命名。3.將輸入amira軟件的灰度值圖像保存為后綴名為“.hmascii”的文件,將此文件輸入hypermesh軟件,并且在hypermesh軟件中這個文件呈現(xiàn)出止點四個部分的原始包絡(luò)網(wǎng)格模型的形態(tài)。在生成匹配原始包絡(luò)網(wǎng)格的高階曲面后,刪除原始包絡(luò)網(wǎng)格。各個部分填充四面體元素,之間以節(jié)點相連接,最終獲得實體網(wǎng)格模型。將hypermes軟件生成的實體網(wǎng)格模型輸入abaqus軟件,各個部分賦予不同的材料屬性,骨端的底部固定。將拉伸負荷平均施加于止點近端,沿acl長軸方向。在四個方向上平均的施加剪切負荷,包括從前向后,從后向前,從內(nèi)向外,從外向內(nèi)。研究結(jié)果1.重建的模型展示了ACL脛骨止點纖維軟骨獨特的空間構(gòu)型。根據(jù)其空間構(gòu)型,將非鈣化纖維軟骨層分為三個結(jié)構(gòu)單元:外側(cè)、內(nèi)側(cè)和后側(cè)結(jié)構(gòu)單元。相對于內(nèi)側(cè)單元,外側(cè)單元出現(xiàn)的位置最淺,止點從韌帶到非鈣化纖維軟骨的過渡最早出現(xiàn)在外側(cè),外側(cè)和內(nèi)側(cè)單元幾乎沒有交集,它們通過一個平臺將其分開。相對于外側(cè)和內(nèi)側(cè)單元,后側(cè)單元展示出不同的空間構(gòu)型,呈現(xiàn)出中空的斜坡狀結(jié)構(gòu)。每個單元的非鈣化纖維軟骨和鈣化纖維軟骨的厚度有顯著性差異,外側(cè)單元最厚,后側(cè)單元最薄,內(nèi)側(cè)單元介于兩者之間。暫時將外側(cè)、內(nèi)側(cè)及后側(cè)單元分別命名為L、M及P結(jié)構(gòu)單元,與各結(jié)構(gòu)單元相連的纖維束暫時命名為L束、M束及P束。2.L束、M束及P束的幾何中心分別位于ACL的外側(cè)、前內(nèi)側(cè)及后內(nèi)側(cè),因此將L束、M束及P束分別命名為外側(cè)束、前內(nèi)束及后內(nèi)束。3.用HyperMesh和Abaqus軟件構(gòu)建和模擬止點四層結(jié)構(gòu)包括韌帶、非鈣化纖維軟骨、鈣化纖維軟骨和軟骨下骨的三維FE模型。應(yīng)力云圖顯示ACL內(nèi)部纖維束的拉伸和剪切應(yīng)力分布不均勻。ACL外側(cè)束應(yīng)力最低,應(yīng)力向四周呈放射狀的逐漸升高,前內(nèi)束應(yīng)力高于外側(cè)束,應(yīng)力最高的部分位于后內(nèi)束。研究結(jié)論1.基于脛骨止點非鈣化纖維軟骨空間構(gòu)型劃分ACL功能束為外側(cè)束、前內(nèi)束、后內(nèi)束,外側(cè)束的承載能力最大,能夠承擔更大的拉伸和剪切力,在膝關(guān)節(jié)活動中起最重要的功能,前內(nèi)束作用次之,后內(nèi)束功能作用最弱。臨床上,ACL損傷后應(yīng)重建外側(cè)束。2.通過有限元力學分析證實非鈣化纖維軟骨厚度與剪切負荷大小呈正相關(guān),鈣化纖維軟骨厚度與拉伸負荷呈正相關(guān)。
[Abstract]:The mechanical and kinematic studies of the anterior cruciate ligament (ACL) before the study are mostly based on the ACL functional bundle division, which are divided into the anterior (anteromedial, AM) and the posterior (posterolateral, PL) bundles widely accepted. The division is based on the different tension of AM and PL during the knee joint movement. Force state, and magnetic resonance imaging (MRI) manifestations of oblique sagittal and oblique coronal position. Clinically, the theoretical basis of ACL double beam reconstruction is the previous internal and posterior fasciculus. However, this division is still controversial. Some scholars have confirmed that there are three bundles of ACL in the cadaver knee research, and some other scholars have not. To find the histological basis of the ACL functional bundle division. At the same time, not all ACL can be divided into these two bundles. And a large number of literature studies have proved that the clinical efficacy of ACL double beam reconstruction is not better than single beam reconstruction of.ACL through a multiple tissue formed interface structure inserted into the subbone of the soft bone, this interface structure promotes soft tissue and The hard tissue is better connected, and the physiological load is more effectively transferred in the joint movement to the.ACL tibial stop, which is composed of four distinct different tissues: ligaments, non calcified fibrocartilage, calcified fibrocartilage and bone tissue. This local difference is divided into the interface of non calcified tissue and calcified tissue to make the stop point. The characteristics gradually change, reduce the stress level, make the mechanical load transfer from the ligament to the bone more effective. The thicker the non calcified fibrocartilage, the greater the shear or compression force. The thickness of the calcified fibrocartilage and the degree of contact with the bone are closely related to the local tensile force. The distribution difference and the spatial configuration of the ACL tibial bone stop point fibrous cartilage In order to further explore the mechanical properties of ACL, in order to clarify the mechanical load distribution from ACL to bone, we analyzed the regional differences in the distribution of ACL tibial fiber cartilage. By the spatial configuration of local non calcified fibrocartilage, we indirectly divided ACL into different functional bundles by using it as a histological basis. The functional bundles of ACL need to be located in the anatomical location. In this paper, the geometric center of the functional bundles of ACL is calculated by mathematical computing software. The location of the geometric center and the named functional bundle.ACL are one of the most important ligaments of the knee joint. Many experiments have passed through the body, in vitro and digital simulation methods to study it. In maintaining the function of joint stability and load transfer. Because of the complex anatomical structure and experimental limitations of ACL, the finite element (FE) model can provide many useful information of ACL, which are difficult to obtain from the entity study. In the previous study, a simple load condition was loaded to analyze ACL in the joint. The stress distribution in the activity is still in dispute. However, the stress distribution of the internal fiber bundles in the ACL is still controversial. Therefore, this study aims to analyze the stress distribution of the internal fiber bundles in different tissues of the ACL tibia. Each stop tissue plays a different role in the process of transferring the external force from the ACL to the bone. The stress distribution of the internal fiber bundles in ACL is significantly affected. In this study, a digital model reflecting the geometric structure of the ACL tibia point is established, and the stop point FE model is built in it to carry out the mechanical analysis and digital simulation test. At the same time, the material attributes of the four layers of stop point are given, and the boundary conditions are set up. Load to carry out the finite element analysis to show the stress distribution of the internal fiber bundles in ACL. Method 1. the specimens of the knee joint were obtained from the bone tissue Library of our hospital and the ACL tibial stop was identified and intercepted. After histological treatment, the specimens were divided into 50 microns (micrometer, M) to carry out continuous transverse section, parallel red o/ green staining. Under the light microscope, the specimen was observed under the light microscope. A number of electronic pictures were obtained for each cross section, and a complete image of the transverse section was automatically spliced with Photoshop software. The tissue morphology and staining were used to distinguish four layers of tissue including fiber bundles, non calcified fibrocartilage, calcified fibrocartilage and subchondral bone. Four tissues were manually traced with Photoshop software. The complete gray value image processed by Photoshop software is input into the Amira software, and the software is used for 3D reconstruction to obtain the model. Different organizations use different colors to represent them. Through Amira software, the geometric configuration of the stop point can be clearly displayed. According to its spatial configuration, the stop point is not The calcified fibrous cartilage layer is divided into different structural units, and ACL functional bundles are divided. The thickness of each structural unit is measured by Amira software. The thickness of calcified fibrous cartilage is measured at the same time according to the partition of non calcified fibrocartilage. The thickness of the structure unit of the non calcified fibrocartilage layer and the calcified soft bone layer is statistically analyzed. The single factor variance analysis (one-wayanalysisofvariance) was used and the p value was set as 0.05.2. to make the contour images of the functional bundles of the ACL tibia point by the Photoshop software. The geometric center was calculated by MATLAB software, and the location of the functional bundles was calculated by the relative position of the geometric center of the ACL function beam and the ACL geometry center, and the confidence was calculated. The 0.95 confidence interval, and the name of the function bundle.3. saves the gray value image of the input Amira software as the ".Hmascii" file with the suffix, input this file into the HyperMesh software, and in the HyperMesh software, the file presents the form of the original envelope mesh model of the stop point in the form of the original matching original. After enveloping the high-order surface of the grid, the original envelope grid is deleted. Each part is filled with tetrahedral elements, and the entity grid model is finally obtained. The entity grid model generated by the hypermes software is input into the ABAQUS software. The different parts are endowed with different materials and the bottom of the bone is fixed. The tensile load is applied on average. At the end of the stop point, along the ACL long axis direction, the average shear load is applied in four directions, including the former and the backward, from the back forward, from the inside to the outside. The 1. reconstruction model shows the unique spatial configuration of the cartilage of the tibial stop point fibrocartilage. The non calcified fibrous cartilage layer is divided into three structural units according to its spatial structure. The lateral, medial, and backside structural units. Relative to the inner element, the lateral element appears to be the most shallow. The transition from the ligaments to the non calcified fibrocartilage appears at the earliest outside, and the lateral and medial units have almost no intersection. They separate them through a platform. The phase is different for the lateral and medial units, and the rear units are different. The thickness of the non calcified fibrocartilage and calcified fibrous cartilage in each unit has a significant difference. The lateral element is the thickest, the posterior element is the thinnest and the inner element is between the two. The lateral, medial and posterior elements are named L, M and P structural units, and the structural units of each unit. The fibrous bundles are named L bundle, M bundle and P bundle.2.L bundle. The geometric center of M bundle and P bundle is located in the lateral, medial and posterior medial of ACL, respectively. Therefore, L bundles, M beam and P bundle are named lateral bundles respectively. The anterior and posterior inner bundles are constructed and simulated with four layers of ligaments, non calcified fibrocartilage and calcium. The three-dimensional FE model of the fibrocartilage and subchondral bone. The stress cloud map shows that the tensile and shear stress distribution of the internal fiber bundles in ACL is the lowest in the lateral bundle of.ACL, the stress rises to the periphery, the stress of the anterior internal beam is higher than the lateral beam, and the most stress is in the posterior inner bundle. Conclusion 1. based on the non calcium at the tibia stop point. The spatial configuration of the fibrocartilage is divided into the ACL function bundle as the lateral bundle, the anterior internal bundle, the posterior inner bundle and the lateral bundle are the most carrying capacity, and can bear the greater tensile and shear force. It plays the most important function in the knee joint activity. The anterior internal beam is the second and the posterior fasciculus function is the weakest. In clinical, the lateral bundle should be rebuilt by the limited.2. through the ACL injury. Meta mechanics analysis showed that non calcified fibrocartilage thickness was positively correlated with shear load. Calcified fibrocartilage thickness was positively correlated with tensile load.
【學位授予單位】:第三軍醫(yī)大學
【學位級別】:博士
【學位授予年份】:2015
【分類號】:R686
【相似文獻】
相關(guān)期刊論文 前10條
1 楊小紅;陳鴻輝;王文;梁佩紅;譚見容;秦嶺;;低強度脈沖超聲在骨-肌腱結(jié)合部纖維軟骨帶修復中的作用[J];廣州醫(yī)藥;2007年03期
2 徐青鐳,吳海山,周維江;體外器官培養(yǎng)系統(tǒng)中纖維軟骨組織修復的實驗研究[J];解放軍醫(yī)學雜志;1998年06期
3 潘險峰,林月秋,湯遜,周中英,趙穩(wěn)興;兔半月板纖維軟骨細胞的培養(yǎng)及生物學特性研究[J];中國矯形外科雜志;2000年10期
4 祝云利 ,荊鑫 ,繆志和 ,吳海山 ,周維江;人半月板纖維軟骨細胞培養(yǎng)及生物學特性研究[J];解放軍醫(yī)學雜志;2002年05期
5 劉曉陽,湯繼文;兔半月板纖維軟骨細胞在纖維蛋白凝膠中體外培養(yǎng)的生物學特性[J];中國矯形外科雜志;2003年18期
6 郭其勇,亓建洪,朱寶林,陳昌偉;纖維軟骨間葉瘤一例報告[J];中華骨科雜志;2003年08期
7 匡世軍;張志光;何一青;廖明庭;蘇凱;張娟;;兔顳下頜關(guān)節(jié)盤纖維軟骨細胞分離培養(yǎng)的實驗研究[J];中山大學學報(醫(yī)學科學版);2006年03期
8 盧華定,蔡道章,吳剛,曾春,李曉峰;Ⅰ型膠原半月板支架負載纖維軟骨細胞體外培養(yǎng)[J];中國矯形外科雜志;2005年16期
9 徐青鐳,吳海山,周維江;兔半月板纖維軟骨組織缺損的體外修復實驗[J];第二軍醫(yī)大學學報;1998年06期
10 張保朝;付國惠;邢娟;梁新明;;纖維軟骨栓塞性脊髓梗死1例[J];中國實用神經(jīng)疾病雜志;2013年02期
相關(guān)會議論文 前2條
1 盧華定;蔡道章;曾春;李曉峰;吳剛;;Ⅰ型膠原半月板支架負載纖維軟骨細胞體外培養(yǎng)[A];第四屆全軍腰腿痛學術(shù)研討會、第五屆全國肢殘康復護理研討會論文選編[C];2005年
2 沙川華;陳孟詩;李雪;;人體“腕纖維軟骨復合體”應(yīng)力松弛實驗研究[A];第十四屆全國運動生物力學學術(shù)交流大會論文集[C];2010年
相關(guān)重要報紙文章 前1條
1 吳一福;我國殼聚糖再生纖維軟骨研究成功[N];中國醫(yī)藥報;2006年
相關(guān)博士學位論文 前2條
1 代燦;基于脛骨止點纖維軟骨空間構(gòu)型的前交叉韌帶功能束劃分及力學分析研究[D];第三軍醫(yī)大學;2015年
2 祝云利;纖維軟骨細胞-膠原復合物修復半月板損傷的實驗研究[D];第二軍醫(yī)大學;2001年
相關(guān)碩士學位論文 前4條
1 郭維民;脫細胞半月板細胞外基質(zhì)的制備及其對半月板纖維軟骨細胞的作用[D];中國人民解放軍醫(yī)學院;2015年
2 包呼日查;纖維軟骨細胞—纖維蛋白凝膠復合物修復半月板損傷的初步研究[D];吉林大學;2009年
3 趙玉剛;微創(chuàng)牽張技術(shù)對腱骨結(jié)合部的影響[D];福建中醫(yī)藥大學;2011年
4 曾子騰;MLRS、SRμCT對骨腱連接點結(jié)構(gòu)的評估及LIPUS對其愈合的影響[D];中南大學;2013年
,本文編號:1818046
本文鏈接:http://sikaile.net/shoufeilunwen/yxlbs/1818046.html