短跑加速階段與最大速度階段生物力學(xué)特征研究
本文關(guān)鍵詞:短跑加速階段與最大速度階段生物力學(xué)特征研究 出處:《上海體育學(xué)院》2016年博士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 運(yùn)動(dòng)學(xué) 地面反作用力 環(huán)節(jié)互動(dòng)力學(xué) 肌電圖 神經(jīng)肌肉控制
【摘要】:研究目的:短跑是一項(xiàng)要求運(yùn)動(dòng)員在最短的時(shí)間內(nèi)通過一段較短距離的田徑運(yùn)動(dòng),需要運(yùn)動(dòng)員發(fā)揮最大下肢力量與爆發(fā)力。它是由多個(gè)階段組成。短跑的成功取決于在加速階段盡可能快地完成加速以及在最大速度階段盡可能地維持住最大速度。每個(gè)階段的生物力學(xué)機(jī)制不同,進(jìn)而對運(yùn)動(dòng)員的能力要求也有所差異。大多數(shù)的短跑研究僅關(guān)注了短跑某一階段,較少研究專注于分析不同階段間的差異。本研究試圖分析短跑加速階段與最大速度階段的生物力學(xué)指標(biāo)以及神經(jīng)肌肉控制機(jī)制的差異,進(jìn)而探討不同階段對運(yùn)動(dòng)員能力要求的差異,為將來針對性訓(xùn)練項(xiàng)目的設(shè)計(jì)提供理論參考。研究方法:使用Vicon紅外運(yùn)動(dòng)捕捉系統(tǒng)(200Hz,12個(gè)攝像頭)、Kistler測力臺(1000Hz,3塊)以及Delsys肌電無線采集系統(tǒng)(4000Hz,7導(dǎo))采集20名短跑運(yùn)動(dòng)員加速階段與最大速度階段的運(yùn)動(dòng)學(xué)、地面反作用力以及肌電圖數(shù)據(jù)。起跑線分別距離第一塊測力臺約為12米與40米以采集短跑加速階段與最大速度階段數(shù)據(jù)。用Visual 3D對運(yùn)動(dòng)學(xué)與地面反作用力數(shù)據(jù)進(jìn)行低通濾波處理以及建立15環(huán)節(jié)人體模型計(jì)算身體重心速度,低通濾波截止頻率分別為13Hz與72Hz。采用C#語言自編環(huán)節(jié)互動(dòng)力學(xué)軟件計(jì)算下肢三關(guān)節(jié)一個(gè)步態(tài)周期內(nèi)的環(huán)節(jié)互動(dòng)力學(xué)各力矩分量。采用Delsys數(shù)據(jù)處理軟件對肌電圖數(shù)據(jù)進(jìn)行濾波整流處理,用C#語言自編肌電圖數(shù)據(jù)處理軟件計(jì)算各時(shí)期的均方根振幅。采用配對樣本T檢驗(yàn)進(jìn)行加速階段與最大速度階段各指標(biāo)差異的統(tǒng)計(jì)學(xué)分析,顯著水平為α=0.05。針對不同數(shù)據(jù)集,顯著水平進(jìn)行Bonferroni調(diào)整。研究結(jié)果:兩短階段在跑速、支撐期時(shí)長以及步長上具有顯著性差異。在水平方向地面反作用力指標(biāo),加速階段制動(dòng)沖量與推進(jìn)沖量的比值約為1:4,最大速度階段推進(jìn)沖量略大于制動(dòng)沖量。加速階段的制動(dòng)力峰值顯著小于最大速度階段,而推進(jìn)力峰值沒有顯著性差異。峰值出現(xiàn)時(shí)刻兩階段相似,制動(dòng)力峰值出現(xiàn)在10%支撐期,推進(jìn)力峰值出現(xiàn)在72%支撐期。最大速度階段的垂直力峰值顯著大于加速階段,但垂直沖量兩階段間沒有顯著性差異。垂直力峰值出現(xiàn)時(shí)刻兩階段存在顯著性差異,最大速度階段為31%支撐期,加速階段為37%支撐期。對于環(huán)節(jié)互動(dòng)力學(xué)指標(biāo),支撐期的下肢肌肉力矩主要對抗接觸力矩;擺動(dòng)期的下肢肌肉力矩主要對抗慣性力矩。在10%支撐期時(shí)的屈髖與伸膝肌肉力矩峰值、30%—40%支撐期時(shí)的伸膝與踝關(guān)節(jié)跖屈肌肉力矩峰值以及擺動(dòng)末期的伸髖肌肉力矩峰值上,兩短跑階段存在顯著性差異。最大速度階段的肌肉力矩峰值大于加速階段。兩短跑階段步態(tài)各時(shí)期主要激活肌肉的均方根振幅存在顯著性差異。分別為支撐期(制動(dòng)期與推進(jìn)期)的腓腸肌內(nèi)側(cè)頭、前擺期的股直肌與脛骨前肌以及后擺期的股二頭肌。研究結(jié)論:運(yùn)動(dòng)員在加速階段能夠完成身體重心的加速并不取決于水平推進(jìn)力更大,而是水平制動(dòng)力更小。這提示提高短跑加速表現(xiàn)的技術(shù)優(yōu)化訓(xùn)練應(yīng)更加注重降低加速階段的水平制動(dòng)力。從動(dòng)作控制角度,支撐期內(nèi)肌肉力矩主要抵抗平衡地面反作用力引起的接觸力矩。兩短跑階段在10%支撐期與30%—40%支撐期時(shí)下肢肌肉力矩峰值的差異分別與水平制動(dòng)力峰值和垂直力峰值差異有關(guān)。最大速度階段支撐期的腓腸肌激活程度更高以應(yīng)對由更大垂直力峰值引起的更強(qiáng)烈的落地沖擊。最大速度階段前擺期股直肌激活程度更高以產(chǎn)生更大屈髖肌肉力矩對抗更大的伸髖慣性力矩;最大速度階段后擺期股二頭激活程度更高以產(chǎn)生更大伸髖肌肉力矩對抗更大的屈髖慣性力矩。這些發(fā)現(xiàn)對于田徑短跑訓(xùn)練有著重要指導(dǎo)意義。
[Abstract]:Objective: the purpose of this study is a sprint athletes through a short distance track in the shortest time, athletes are required to maximize the lower limb strength and explosive force. It is composed of multiple stages. Success in the sprint in the acceleration stage as soon as possible and accelerate at maximum speed as much as possible to maintain maximum speed. The biomechanical mechanism of each stage is different, then the capacity requirements of athletes are different. Most of the studies focus only on the sprint sprint at a certain stage, few studies focus on the analysis of differences between different stages. This study attempts to analyze the differences of sprint speed and maximum speed stage biomechanical index phase and nerve muscle the control mechanism, and discusses the different stages of different athletes ability requirements, for the future to design training programs and provide a theoretical reference. Research methods: using infrared Vicon motion capture system (200Hz, 12, camera) Kistler forcemeasurement (1000Hz, 3) and Delsys (4000Hz, wireless EMG acquisition system 7) collected 20 sprinters kinematic acceleration phase and the maximum velocity phase, ground reaction force and EMG data. The starting line respectively. From the first block of force platform is about 12 meters and 40 meters sprint to collect the acceleration phase and the maximum velocity phase data. On kinematics and ground reaction force data were low-pass filtering and the establishment of 15 parts of human body model to calculate the velocity of body gravity with Visual 3D, low pass filter cutoff frequency were 13Hz and 72Hz. by mechanical interaction link C# language to calculate the three joints of the lower limb during one gait cycle by mechanical links interactive software. Each moment component to analyze the EMG data filtering rectification treatment using Delsys data processing software, C# The RMS amplitude of EMG data processing software compiled language to calculate the period. Using paired samples T test was used for statistical analysis of different phases and each index of maximum speed stage of acceleration, the significant level of alpha =0.05. for different data sets, Bonferroni adjustment significant level. Results: two stages in the short run speed, significant support during the period of time and step. In the horizontal ground reaction force index, the ratio of the acceleration phase and braking impulse impulse is about 1:4, the maximum speed stage propulsion is slightly greater than the braking impulse. The braking force peak acceleration stage is significantly less than the maximum speed stage, and there is no significant difference between the thrust peak. The peak time is two the stage is similar to that of the peak power support period in 10%, propulsion peak in the 72% support period. The vertical force peak stage was significantly higher than that with maximum speed Speed, but the vertical impulse between two stages had no significant difference. There exist significant differences between the two stage time peak vertical force, the maximum speed of support for a period of 31% stage, accelerate the phase 37% support period. For interactive mechanical index of links, support of the lower limb muscle torque mainly against the contact moment; lower extremity muscle torque mainly against inertia moment of the swing phase. In the 10% support period of hip flexion and knee extensor muscle torque peak, 30% - 40% support period of knee extensor and ankle plantar flexor muscle peak torque and swing at the end of the hip extensor muscle torque peak, there is a significant difference between the two sprint stage. Muscle torque peak stage is larger than the maximum speed the stage of acceleration. There is a significant difference between the RMS amplitude of two sprint stage gait in each period. The main activation of muscle respectively support phase (braking period and advance period) of the medial head of gastrocnemius muscle, placed in front of the stage The rectus femoris muscle and anterior tibial muscle and back stage femoral head two muscle. Conclusion: accelerate the athletes to complete the body center of gravity in the acceleration stage does not depend on the level of more thrust, but the level of power system. This suggests that smaller improved sprint acceleration performance technology optimization training should pay more attention to reduce the level of acceleration phase of the braking force from the angle of control action. During the period, the main support muscle torque resistance contact ground reaction force caused by the torque balance. Two stage and 30% stage sprint support - 40% support phase difference lower extremity muscle peak torque respectively with the horizontal and vertical power peak related to the differences in 10%. The maximum speed stage supporting phase of gastrocnemius muscle activation in order to cope with the higher degree caused by greater vertical force peak more intense. The maximum speed of landing impact stage before the activation of a higher degree of femoral rectus to produce greater hip flexion Muscle torque against greater hip extensor moment of inertia; the maximum speed two head back stage stock activation more to produce greater hip extensor muscle torque against greater hip flexion moment of inertia. These findings have important guiding significance for sprint training.
【學(xué)位授予單位】:上海體育學(xué)院
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:G822.1;G804.6
【相似文獻(xiàn)】
相關(guān)期刊論文 前4條
1 班曉娜;;發(fā)展遼寧服務(wù)業(yè)吸納就業(yè)的思考[J];遼寧經(jīng)濟(jì);2006年03期
2 朱桂梅;徐錦忠;;一種典型運(yùn)動(dòng)問題的解法[J];河北理科教學(xué)研究;2006年02期
3 韓慶春;;自行車的功率[J];物理教學(xué);2008年06期
4 ;[J];;年期
相關(guān)會議論文 前2條
1 徐和平;;遵循城鎮(zhèn)化的規(guī)律、積極穩(wěn)妥推進(jìn)我省城鎮(zhèn)化進(jìn)程的建議[A];“新一輪西部大開發(fā)與貴州社會發(fā)展”學(xué)術(shù)研討會暨貴州省社會學(xué)學(xué)會2010年學(xué)術(shù)年會論文集[C];2010年
2 周志鵬;鄭亮亮;;我國優(yōu)秀女子短道速滑運(yùn)動(dòng)員500米起跑技術(shù)的運(yùn)動(dòng)學(xué)分析[A];第十三屆全國運(yùn)動(dòng)生物力學(xué)學(xué)術(shù)交流大會論文匯編[C];2009年
相關(guān)重要報(bào)紙文章 前10條
1 中信證券首席經(jīng)濟(jì)學(xué)家 諸建芳 ;中國城市化步入第二個(gè)加速階段[N];江蘇經(jīng)濟(jì)報(bào);2012年
2 通訊員 張煜;東三縣工業(yè)化進(jìn)程進(jìn)入加速階段[N];昌吉日報(bào);2008年
3 李佐軍 國務(wù)院發(fā)展研究中心資源與環(huán)境政策研究所;中國進(jìn)入“城鎮(zhèn)化加速階段后半場”[N];中國經(jīng)濟(jì)時(shí)報(bào);2014年
4 記者 張牡霞 秦菲菲 編輯 梁偉;城市化進(jìn)入加速階段 明年達(dá)48%[N];上海證券報(bào);2009年
5 徐走 賀耀堂 王春楠;我市城鎮(zhèn)化率達(dá)36%[N];連云港日報(bào);2005年
6 本報(bào)記者 張莉;深圳前海金融創(chuàng)新將進(jìn)入加速階段[N];中國證券報(bào);2013年
7 韓潔;城鎮(zhèn)化發(fā)展進(jìn)入加速階段[N];經(jīng)濟(jì)參考報(bào);2004年
8 張牡霞 秦菲菲;城市化進(jìn)入加速階段 房地產(chǎn)業(yè)長期利好[N];濟(jì)寧日報(bào);2010年
9 本報(bào)記者 司建楠;我國工業(yè)化進(jìn)入中期加速階段[N];中國工業(yè)報(bào);2009年
10 宋時(shí)飛;假如去世博學(xué)“治堵”[N];中國經(jīng)濟(jì)導(dǎo)報(bào);2010年
相關(guān)博士學(xué)位論文 前1條
1 于佳彬;短跑加速階段與最大速度階段生物力學(xué)特征研究[D];上海體育學(xué)院;2016年
相關(guān)碩士學(xué)位論文 前1條
1 劉維雄;滑塊軸承加速階段下潤滑性能的理論仿真與實(shí)驗(yàn)研究[D];中北大學(xué);2015年
,本文編號:1399463
本文鏈接:http://sikaile.net/shoufeilunwen/sklbs/1399463.html