不同霧化方式和噴霧間隔對營養(yǎng)液理化特性和生菜生長效果的影響研究
發(fā)布時間:2021-12-30 14:36
目前,較少資源下增產(chǎn)是農(nóng)業(yè)工程領(lǐng)域的熱點(diǎn)問題,霧化栽培具有極度節(jié)水節(jié)肥的優(yōu)點(diǎn),是解決這一問題的行之有效方法。在的霧化栽培研究中,目前仍有三個關(guān)鍵問題沒有被解決:(1)霧化后,營養(yǎng)液的物理化學(xué)特性發(fā)生如何的變化?(2)霧化器關(guān)鍵工作參數(shù)(例如:霧滴粒徑、噴霧時間和噴霧間隔)如何影響作物的生長?(3)作物的生長參數(shù)和理化參數(shù)與霧培關(guān)鍵工作參數(shù)的關(guān)系如何?(4)霧化栽培的最優(yōu)參數(shù)是什么?本文的研究試圖回答和解決上述四個關(guān)鍵問題,主要工作如下:1.霧化栽培系統(tǒng)的設(shè)計和開發(fā)為實(shí)現(xiàn)上述目標(biāo),首先設(shè)計了氣助式靜電霧化噴嘴,用于霧化營養(yǎng)液。在霧培系統(tǒng)中,霧化營養(yǎng)液液滴大小是影響霧培系統(tǒng)效果最重要的因素之一。目前,霧化栽培系統(tǒng)主要使用噴淋式霧化噴頭,尚沒有一項(xiàng)研究深入討論霧化噴嘴的選擇問題。本文選擇壓電式超聲霧化噴頭、氣助式霧化噴頭、離心式霧化噴頭,并且設(shè)計了一種為了氣助式靜電霧化噴頭用于增加根部霧滴的粘附面積。氣助式靜電霧化噴頭可以產(chǎn)生比傳統(tǒng)霧化噴頭更小并且粘附性更強(qiáng)的霧滴。其次,采用四種噴嘴(超聲波霧化噴嘴,氣助式霧化噴嘴,氣助式高壓靜電霧化噴嘴和離心霧化噴嘴)設(shè)計霧化栽培系統(tǒng)。其中超聲波霧化噴嘴,...
【文章來源】:江蘇大學(xué)江蘇省
【文章頁數(shù)】:227 頁
【學(xué)位級別】:博士
【文章目錄】:
ACKNOWLEDGEMENT
ABSTRACT
摘要
LIST OF ABBREVIATIONS
CHAPTER 1 INTRODUCTION
1.1 Global perspective and research background
1.2 Soilless cultivation technique
1.3 Status of the soilless cultivation at abroad and home
1.4 Historical background of the aeroponic system
1.5 Need of the study and motivation
1.6 Research objectives
1.7 Outline of the dissertation
CHAPTER 2 LITERATURE REVIEW
2.1 General introduction of the chapter
2.2 Modern plant cultivation technologies in agriculture under controlled environment:a review on aeroponics
2.2.1 Introduction
2.2.2 Main components of the aeroponic system
2.2.2.1 Spraying misters and droplet sizes
2.2.2.2 Ultrasonic nozzles
2.2.2.3 Pressure(centrifugal and air-assisted)nozzles
2.2.2.4 pH and EC values of the nutrient solution
2.2.2.5 Light and temperature
2.2.2.6 Relative humidity and dissolved oxygen concentration
2.2.2.7 Spraying time,spraying interval and nutrient reservoir
2.2.3 Mechanization and optimizing of root environment in an aeroponics system
2.2.3.1 Plant growing system
2.2.3.2 Nutrient solution management in aeroponics system
2.2.4 Aeroponics engineering and potential challenges
2.2.5 Advantages and disadvantages of aeroponics system
2.2.6 What we know and what remains to be known in an aeroponics system
2.2.7 Future application prospects
2.2.8 Conclusion
2.3 Monitoring and control systems in agriculture using intelligent sensor techniques:a review of aeroponics system
2.3.1 Introduction
2.3.2 Key problems and difficulties of aeroponics system
2.3.3 Related work home and abroad
2.3.4 Aeroponics system and sensors network
2.3.4.1 Number of sensors nodes and input parameters
2.3.5 Sensors types and monitoring parameters
2.3.5.1 Temperature sensor
2.3.5.2 Humidity sensor
2.3.5.3 Light intensity sensor
2.3.5.4 CO2 sensor
2.3.5.5 Water level sensor
2.3.5.6 EC and pH sensor
2.3.6 Sensors working protocol in the aeroponics system
2.3.7 Advantages of sensors techniques in aeroponics system
2.3.8 Future application
2.3.9 Conclusion
CHAPTER 3 DESIGN AND DEVELOPMENT OF THE AEROPONIC SYSTEMS USING DIFFERENT ATOMIZATION NOZZLES
3.1 General introduction of the chapter
3.2 Design of the air-assisted electrostatic nozzle,working principle and droplet size tests of the different aeroponic atomization nozzles
3.2.1 Determination of the structural parameters of Laval tube of the air-assisted electrostatic nozzle
3.2.2 Determination of the cross-sectional area of the Laval tube throat of air-assisted electrostatic nozzle
3.3 Working principle of the different aeroponic atomization nozzles
3.3.1 Air-assisted with and without electrostatic atomization nozzle
3.3.2 Centrifugal atomizing nozzle
3.3.3 Ultrasonic atomization nozzle
3.4 Droplet size of the selected nozzles
3.4.1 Droplet sizes of the Hartmann atomization nozzle with resonance tube and air-assisted electrostatic nozzle
3.4.2 Droplet sizes of the centrifugal atomizing nozzle
3.4.3 Droplet sizes of the ultrasonic atomization nozzle
3.5 Status of the existing aeroponic products and systems
3.6 Design and development of aeroponics systems
3.7 Main parts and required material
3.7.1 Growth chamber and nutrient reservoir
3.7.2 Atomization nozzles
3.7.3 Additional required material
3.8 Manufacturing of the different aeroponic systems
3.8.1 Aeroponic systems developed with air-assisted nozzles
3.8.2 Aeroponic system developed with centrifugal atomizing nozzle
3.8.3 Aeroponic system developed with ultrasonic atomization nozzles
3.9 Technical challenges
3.10 Routine and preventative maintenance of the aeroponic system
3.11 Advantages of the proposed aeroponic systems
3.12 Conclusion
CHAPTER 4 EFFECTS OF AEROPONIC NOZZLES,NUTRIENT SOLUTION SPRAYING TIMES AND SPRAYING INTERVALS ON PHYSICOCHEMICAL PROPERTIES OF THE ATOMIZED NUTRIENT SOLUTION
4.1 General introduction of the chapter
4.2 Effect of different ultrasonic nozzle atomization frequencies,nutrient solution spraying times and spraying intervals on the EC and pH values of the YNS..
4.2.1 Introduction
4.2.2 Materials and methods
4.2.2.1 Aeroponic systems and growth condition
4.2.2.2 Preparation of the nutrient solution
4.2.2.3 Measurements of EC and pH values of the nutrient solution
4.2.2.4 Experiment design
4.2.2.5 Statistical analysis
4.2.3 Results
4.2.3.1 Effect of different ultrasonic nozzle atomization frequencies,nutrient solution spraying times and nutrient solution spraying intervals on EC value of the atomized YNS
4.2.3.1.1 Verifying test of the developed models forΔEC
4.2.3.2 Effect of different ultrasonic nozzle atomization frequencies,nutrient solution spraying times and nutrient solution spraying intervals on pH value of the atomized YNS
4.2.3.2.1 Verifying test of the developed models forΔpH
4.3 Effects of different mechanical and ultrasonic nozzles(droplet sizes),nutrient solution spraying times and nutrient solution spraying intervals on physicochemical properties of the atomized SCAULVFB
4.3.1 Introduction
4.3.2 Materials and methods
4.3.2.1 Cultivation systems and growth condition
4.3.2.2 Droplet sizes of the selected nozzles
4.3.2.3 Nutrient solution
4.3.2.4 Measurements of the EC, pH, DO and T of the nutrient solution
4.3.2.5 Experimental setup
4.3.2.6 Data analysis
4.3.3 Results
4.3.3.1 Effect of the different aeroponic nozzles (droplet sizes), nutrient solution spraying times and spraying intervals on the EC value of the SCAULVFB
4.3.3.1.1 Verifying test of the developed models forΔEC
4.3.3.2 Effect of the different aeroponic nozzles (droplet sizes), nutrient solution spraying times and spraying intervals times on the p H value of the SCAULVFB
4.3.3.2.1 Verifying test of the developed models forΔp H
4.3.3.3 Effect of the different aeroponic nozzles(droplet sizes),spraying times and spraying intervals on the DO
4.3.3.3.1 Verifying test of developed models forΔDO
4.3.3.4 Effect of the different aeroponic nozzles, nutrient solution spraying times and spraying intervals on the T of the SCAULVFB
4.3.3.4.1 Verifying test of the developed models for ΔT
4.4 Discussion
4.5 Conclusion
CHAPTER 5 EFFECTS OF VARIOUS AEROPONIC NOZZLES (DROPLET SIZES) ON GROWTH, TOTAL POLYPHENOL CONTENT AND ANTIOXIDANT ACTIVITY OF THE LEAFY LETTUCE
5.1 Introduction
5.2 Materials and Methods
5.2.1 Experimental setup
5.2.2 Selection of the aeroponic nozzles
5.2.3 Determination of the droplet sizes of the selected nozzles
5.2.4 Aeroponic systems
5.2.5 Spraying time and spraying interval
5.2.6 Plant material and nutrient solution
5.2.7 Plant harvesting and measurement of the selected parameters
5.2.8 Chlorophyll content and growth parameters
5.2.9 Determination of the total polyphenol content(TPC)and antioxidant activity(AA)
5.2.9.1 Sample preparation for extraction
5.2.9.2 Determination of the total polyphenol content and antioxidant activity
5.2.10 Statistical analysis
5.3 Results
5.3.1 Droplet sizes of the selected atomizers
5.3.2 Changes in pH and EC values of the nutrient solution
5.3.3 Effect of different aeroponic nozzles(droplet sizes)on chlorophyll content and growth parameters of the lettuce plants
5.3.3.1 Chlorophyll content of the lettuce plants
5.3.3.2 Growth parameters of the lettuce plants
5.3.3.3 Correlation analysis between chlorophyll content and growth parameters of the lettuce plants cultivated with different aeroponic nozzles
5.3.4 Effect of different aeroponics nozzles(droplets)on total polyphenol content and antioxidant activity of the lettuce plants
5.3.4.1 Total polyphenol content
5.3.4.2 Total antioxidant capacity assay
5.3.4.3 DPPH free radical scavenging assay
5.3.4.4 ABTS+·Radical-Scavenging Assay
5.3.4.5 Ferric reducing power assay
5.3.4.6 Correlation analysis between total polyphenol content and antioxidant activity of the lettuce plants cultivated with different aeroponic nozzles
5.4 Discussion
5.5 Conclusion
CHAPTER 6 LETTUCE PLANT GROWTH,DEVELOPMENT, AND NUTRIENT UPTAKE RESPONSE WITH DIFFERENT AEROPONIC NUTRIENT SOLUTION SPRAYING INTERVALS
6.1 Introduction
6.2 Materials and Methods
6.2.1 Location and climate condition of the study area
6.2.2 Experimental setup
6.2.3 Cultivation systems
6.2.4 Nutrient solution preparation,spraying time and spraying intervals
6.2.5 Plant material and growth condition
6.2.6 Harvesting and measurements
6.2.7 Determination of the chlorophyll content and growth parameters
6.2.8 Determination of the Nitrogen(N),phosphorus(P)and potassium(K)uptake of the lettuce plants
6.2.9 Statistical analysis
6.3 Results
6.3.1 Effect of different aeroponic nutrient solution spraying intervals on growth and development parameters of the lettuce plants
6.3.1.1 Chlorophyll content
6.3.1.2 Stem diameter
6.3.1.3 Number of leaves per plant
6.3.1.4 Leaf area
6.3.1.5 Shoot length
6.3.1.6 Root length
6.3.1.7 Shoot wet and dry weight
6.3.1.8 Root wet and dry weight
6.3.2 Effect of different aeroponic nutrient solution spraying intervals on nutrient uptake parameters of the lettuce plant
6.3.2.1 Nitrogen uptake of the lettuce plants
6.3.2.2 Phosphorus uptake of the lettuce plants
6.3.2.3 Potassium uptake of the lettuce plants
6.3.3 Lettuce plant growth, development, and nutrient uptake prediction models for different aeroponic nozzles and nutrient solution spraying intervals
6.3.3.1 Chlorophyll content prediction model
6.3.3.2 Stem diameter prediction model
6.3.3.3 Leaf area prediction model
6.3.3.4 Number of leaves per plant prediction model
6.3.3.5 Shoot length prediction model
6.3.3.6 Root length prediction model
6.3.3.7 Nitrogen uptake prediction model
6.3.3.8 Phosphorus uptake prediction model
6.3.3.9 Potassium uptake prediction model
6.4 Discussion
6.5 Conclusion
CHAPTER 7 SUMMARY, RECOMMENDATION, FUTURE PERSPECTIVE AND INNOVATION OF THE STUDY
7.1 Summary
7.2 Recommendation
7.3 Future perspective
7.4 Innovation
REFERENCES
PUBLICATIONS
【參考文獻(xiàn)】:
期刊論文
[1]帶階梯型諧振腔的Hartmann低頻超聲霧化噴嘴設(shè)計及試驗(yàn)[J]. 高建民,馬俊龍. 農(nóng)業(yè)工程學(xué)報. 2017(12)
[2]基于拉瓦爾效應(yīng)的超音速噴嘴霧化性能分析與試驗(yàn)[J]. 楊超,陳波,姜萬錄,高殿榮,金光俊. 農(nóng)業(yè)工程學(xué)報. 2016(19)
[3]海南夏季散葉生菜品種栽培比較試驗(yàn)[J]. 陳艷麗,付亞男,李紹鵬,林師森. 北方園藝. 2014(19)
[4]桁架式超聲霧化栽培器的霧滴沉降和根際溫濕度變化規(guī)律[J]. 高建民,黃桂珍,尹文楚,陸岱鵬,李俊一,劉昌鑑. 農(nóng)業(yè)工程學(xué)報. 2013(06)
[5]縮擴(kuò)型超音速噴管的設(shè)計與仿真[J]. 王克印,韓星星,張曉濤,劉耀鵬,陳吉潮. 中國工程機(jī)械學(xué)報. 2011(03)
[6]中國大陸無土栽培發(fā)展概況(英文)[J]. 蔣衛(wèi)杰,劉偉,余宏軍,鄭光華. 農(nóng)業(yè)工程學(xué)報. 2001(01)
本文編號:3558399
【文章來源】:江蘇大學(xué)江蘇省
【文章頁數(shù)】:227 頁
【學(xué)位級別】:博士
【文章目錄】:
ACKNOWLEDGEMENT
ABSTRACT
摘要
LIST OF ABBREVIATIONS
CHAPTER 1 INTRODUCTION
1.1 Global perspective and research background
1.2 Soilless cultivation technique
1.3 Status of the soilless cultivation at abroad and home
1.4 Historical background of the aeroponic system
1.5 Need of the study and motivation
1.6 Research objectives
1.7 Outline of the dissertation
CHAPTER 2 LITERATURE REVIEW
2.1 General introduction of the chapter
2.2 Modern plant cultivation technologies in agriculture under controlled environment:a review on aeroponics
2.2.1 Introduction
2.2.2 Main components of the aeroponic system
2.2.2.1 Spraying misters and droplet sizes
2.2.2.2 Ultrasonic nozzles
2.2.2.3 Pressure(centrifugal and air-assisted)nozzles
2.2.2.4 pH and EC values of the nutrient solution
2.2.2.5 Light and temperature
2.2.2.6 Relative humidity and dissolved oxygen concentration
2.2.2.7 Spraying time,spraying interval and nutrient reservoir
2.2.3 Mechanization and optimizing of root environment in an aeroponics system
2.2.3.1 Plant growing system
2.2.3.2 Nutrient solution management in aeroponics system
2.2.4 Aeroponics engineering and potential challenges
2.2.5 Advantages and disadvantages of aeroponics system
2.2.6 What we know and what remains to be known in an aeroponics system
2.2.7 Future application prospects
2.2.8 Conclusion
2.3 Monitoring and control systems in agriculture using intelligent sensor techniques:a review of aeroponics system
2.3.1 Introduction
2.3.2 Key problems and difficulties of aeroponics system
2.3.3 Related work home and abroad
2.3.4 Aeroponics system and sensors network
2.3.4.1 Number of sensors nodes and input parameters
2.3.5 Sensors types and monitoring parameters
2.3.5.1 Temperature sensor
2.3.5.2 Humidity sensor
2.3.5.3 Light intensity sensor
2.3.5.4 CO2 sensor
2.3.5.5 Water level sensor
2.3.5.6 EC and pH sensor
2.3.6 Sensors working protocol in the aeroponics system
2.3.7 Advantages of sensors techniques in aeroponics system
2.3.8 Future application
2.3.9 Conclusion
CHAPTER 3 DESIGN AND DEVELOPMENT OF THE AEROPONIC SYSTEMS USING DIFFERENT ATOMIZATION NOZZLES
3.1 General introduction of the chapter
3.2 Design of the air-assisted electrostatic nozzle,working principle and droplet size tests of the different aeroponic atomization nozzles
3.2.1 Determination of the structural parameters of Laval tube of the air-assisted electrostatic nozzle
3.2.2 Determination of the cross-sectional area of the Laval tube throat of air-assisted electrostatic nozzle
3.3 Working principle of the different aeroponic atomization nozzles
3.3.1 Air-assisted with and without electrostatic atomization nozzle
3.3.2 Centrifugal atomizing nozzle
3.3.3 Ultrasonic atomization nozzle
3.4 Droplet size of the selected nozzles
3.4.1 Droplet sizes of the Hartmann atomization nozzle with resonance tube and air-assisted electrostatic nozzle
3.4.2 Droplet sizes of the centrifugal atomizing nozzle
3.4.3 Droplet sizes of the ultrasonic atomization nozzle
3.5 Status of the existing aeroponic products and systems
3.6 Design and development of aeroponics systems
3.7 Main parts and required material
3.7.1 Growth chamber and nutrient reservoir
3.7.2 Atomization nozzles
3.7.3 Additional required material
3.8 Manufacturing of the different aeroponic systems
3.8.1 Aeroponic systems developed with air-assisted nozzles
3.8.2 Aeroponic system developed with centrifugal atomizing nozzle
3.8.3 Aeroponic system developed with ultrasonic atomization nozzles
3.9 Technical challenges
3.10 Routine and preventative maintenance of the aeroponic system
3.11 Advantages of the proposed aeroponic systems
3.12 Conclusion
CHAPTER 4 EFFECTS OF AEROPONIC NOZZLES,NUTRIENT SOLUTION SPRAYING TIMES AND SPRAYING INTERVALS ON PHYSICOCHEMICAL PROPERTIES OF THE ATOMIZED NUTRIENT SOLUTION
4.1 General introduction of the chapter
4.2 Effect of different ultrasonic nozzle atomization frequencies,nutrient solution spraying times and spraying intervals on the EC and pH values of the YNS..
4.2.1 Introduction
4.2.2 Materials and methods
4.2.2.1 Aeroponic systems and growth condition
4.2.2.2 Preparation of the nutrient solution
4.2.2.3 Measurements of EC and pH values of the nutrient solution
4.2.2.4 Experiment design
4.2.2.5 Statistical analysis
4.2.3 Results
4.2.3.1 Effect of different ultrasonic nozzle atomization frequencies,nutrient solution spraying times and nutrient solution spraying intervals on EC value of the atomized YNS
4.2.3.1.1 Verifying test of the developed models forΔEC
4.2.3.2 Effect of different ultrasonic nozzle atomization frequencies,nutrient solution spraying times and nutrient solution spraying intervals on pH value of the atomized YNS
4.2.3.2.1 Verifying test of the developed models forΔpH
4.3 Effects of different mechanical and ultrasonic nozzles(droplet sizes),nutrient solution spraying times and nutrient solution spraying intervals on physicochemical properties of the atomized SCAULVFB
4.3.1 Introduction
4.3.2 Materials and methods
4.3.2.1 Cultivation systems and growth condition
4.3.2.2 Droplet sizes of the selected nozzles
4.3.2.3 Nutrient solution
4.3.2.4 Measurements of the EC, pH, DO and T of the nutrient solution
4.3.2.5 Experimental setup
4.3.2.6 Data analysis
4.3.3 Results
4.3.3.1 Effect of the different aeroponic nozzles (droplet sizes), nutrient solution spraying times and spraying intervals on the EC value of the SCAULVFB
4.3.3.1.1 Verifying test of the developed models forΔEC
4.3.3.2 Effect of the different aeroponic nozzles (droplet sizes), nutrient solution spraying times and spraying intervals times on the p H value of the SCAULVFB
4.3.3.2.1 Verifying test of the developed models forΔp H
4.3.3.3 Effect of the different aeroponic nozzles(droplet sizes),spraying times and spraying intervals on the DO
4.3.3.3.1 Verifying test of developed models forΔDO
4.3.3.4 Effect of the different aeroponic nozzles, nutrient solution spraying times and spraying intervals on the T of the SCAULVFB
4.3.3.4.1 Verifying test of the developed models for ΔT
4.4 Discussion
4.5 Conclusion
CHAPTER 5 EFFECTS OF VARIOUS AEROPONIC NOZZLES (DROPLET SIZES) ON GROWTH, TOTAL POLYPHENOL CONTENT AND ANTIOXIDANT ACTIVITY OF THE LEAFY LETTUCE
5.1 Introduction
5.2 Materials and Methods
5.2.1 Experimental setup
5.2.2 Selection of the aeroponic nozzles
5.2.3 Determination of the droplet sizes of the selected nozzles
5.2.4 Aeroponic systems
5.2.5 Spraying time and spraying interval
5.2.6 Plant material and nutrient solution
5.2.7 Plant harvesting and measurement of the selected parameters
5.2.8 Chlorophyll content and growth parameters
5.2.9 Determination of the total polyphenol content(TPC)and antioxidant activity(AA)
5.2.9.1 Sample preparation for extraction
5.2.9.2 Determination of the total polyphenol content and antioxidant activity
5.2.10 Statistical analysis
5.3 Results
5.3.1 Droplet sizes of the selected atomizers
5.3.2 Changes in pH and EC values of the nutrient solution
5.3.3 Effect of different aeroponic nozzles(droplet sizes)on chlorophyll content and growth parameters of the lettuce plants
5.3.3.1 Chlorophyll content of the lettuce plants
5.3.3.2 Growth parameters of the lettuce plants
5.3.3.3 Correlation analysis between chlorophyll content and growth parameters of the lettuce plants cultivated with different aeroponic nozzles
5.3.4 Effect of different aeroponics nozzles(droplets)on total polyphenol content and antioxidant activity of the lettuce plants
5.3.4.1 Total polyphenol content
5.3.4.2 Total antioxidant capacity assay
5.3.4.3 DPPH free radical scavenging assay
5.3.4.4 ABTS+·Radical-Scavenging Assay
5.3.4.5 Ferric reducing power assay
5.3.4.6 Correlation analysis between total polyphenol content and antioxidant activity of the lettuce plants cultivated with different aeroponic nozzles
5.4 Discussion
5.5 Conclusion
CHAPTER 6 LETTUCE PLANT GROWTH,DEVELOPMENT, AND NUTRIENT UPTAKE RESPONSE WITH DIFFERENT AEROPONIC NUTRIENT SOLUTION SPRAYING INTERVALS
6.1 Introduction
6.2 Materials and Methods
6.2.1 Location and climate condition of the study area
6.2.2 Experimental setup
6.2.3 Cultivation systems
6.2.4 Nutrient solution preparation,spraying time and spraying intervals
6.2.5 Plant material and growth condition
6.2.6 Harvesting and measurements
6.2.7 Determination of the chlorophyll content and growth parameters
6.2.8 Determination of the Nitrogen(N),phosphorus(P)and potassium(K)uptake of the lettuce plants
6.2.9 Statistical analysis
6.3 Results
6.3.1 Effect of different aeroponic nutrient solution spraying intervals on growth and development parameters of the lettuce plants
6.3.1.1 Chlorophyll content
6.3.1.2 Stem diameter
6.3.1.3 Number of leaves per plant
6.3.1.4 Leaf area
6.3.1.5 Shoot length
6.3.1.6 Root length
6.3.1.7 Shoot wet and dry weight
6.3.1.8 Root wet and dry weight
6.3.2 Effect of different aeroponic nutrient solution spraying intervals on nutrient uptake parameters of the lettuce plant
6.3.2.1 Nitrogen uptake of the lettuce plants
6.3.2.2 Phosphorus uptake of the lettuce plants
6.3.2.3 Potassium uptake of the lettuce plants
6.3.3 Lettuce plant growth, development, and nutrient uptake prediction models for different aeroponic nozzles and nutrient solution spraying intervals
6.3.3.1 Chlorophyll content prediction model
6.3.3.2 Stem diameter prediction model
6.3.3.3 Leaf area prediction model
6.3.3.4 Number of leaves per plant prediction model
6.3.3.5 Shoot length prediction model
6.3.3.6 Root length prediction model
6.3.3.7 Nitrogen uptake prediction model
6.3.3.8 Phosphorus uptake prediction model
6.3.3.9 Potassium uptake prediction model
6.4 Discussion
6.5 Conclusion
CHAPTER 7 SUMMARY, RECOMMENDATION, FUTURE PERSPECTIVE AND INNOVATION OF THE STUDY
7.1 Summary
7.2 Recommendation
7.3 Future perspective
7.4 Innovation
REFERENCES
PUBLICATIONS
【參考文獻(xiàn)】:
期刊論文
[1]帶階梯型諧振腔的Hartmann低頻超聲霧化噴嘴設(shè)計及試驗(yàn)[J]. 高建民,馬俊龍. 農(nóng)業(yè)工程學(xué)報. 2017(12)
[2]基于拉瓦爾效應(yīng)的超音速噴嘴霧化性能分析與試驗(yàn)[J]. 楊超,陳波,姜萬錄,高殿榮,金光俊. 農(nóng)業(yè)工程學(xué)報. 2016(19)
[3]海南夏季散葉生菜品種栽培比較試驗(yàn)[J]. 陳艷麗,付亞男,李紹鵬,林師森. 北方園藝. 2014(19)
[4]桁架式超聲霧化栽培器的霧滴沉降和根際溫濕度變化規(guī)律[J]. 高建民,黃桂珍,尹文楚,陸岱鵬,李俊一,劉昌鑑. 農(nóng)業(yè)工程學(xué)報. 2013(06)
[5]縮擴(kuò)型超音速噴管的設(shè)計與仿真[J]. 王克印,韓星星,張曉濤,劉耀鵬,陳吉潮. 中國工程機(jī)械學(xué)報. 2011(03)
[6]中國大陸無土栽培發(fā)展概況(英文)[J]. 蔣衛(wèi)杰,劉偉,余宏軍,鄭光華. 農(nóng)業(yè)工程學(xué)報. 2001(01)
本文編號:3558399
本文鏈接:http://sikaile.net/shoufeilunwen/nykjbs/3558399.html
最近更新
教材專著