植酸在不同沉積物、礦物材料和土壤中的行為研究
本文選題:植酸 切入點(diǎn):吸附 出處:《華中農(nóng)業(yè)大學(xué)》2016年博士論文 論文類型:學(xué)位論文
【摘要】:隨著我國養(yǎng)殖業(yè)的高速發(fā)展,含有豐富植酸的禽畜廢棄物大量進(jìn)入環(huán)境。同時(shí),工業(yè)的高速發(fā)展和不合理施肥導(dǎo)致我國土壤中重金屬的污染問題日益嚴(yán)峻,造成農(nóng)田荒蕪、水體污染的現(xiàn)象屢見不鮮,嚴(yán)重制約了我國農(nóng)業(yè)和社會(huì)經(jīng)濟(jì)的可持續(xù)發(fā)展。植酸作為優(yōu)良的螯合劑和抗氧化劑在食品、化工和重金屬污染治理方面表現(xiàn)著不可忽視的作用。隨著科學(xué)技術(shù)水平的不斷進(jìn)步,植酸的測(cè)定技術(shù)日臻成熟為研究植酸在環(huán)境中的行為提供了有力手段。近年來,植酸與環(huán)境介質(zhì)中重金屬的作用已成為研究熱點(diǎn)。本研究通過野外調(diào)查,探討了典型農(nóng)田和淡水生態(tài)系統(tǒng)中植酸酶的分布特點(diǎn),磷素及植酸的分布行為和賦存形態(tài);通過實(shí)驗(yàn)室批處理實(shí)驗(yàn),研究了植酸在礦物材料和土壤界面的吸附解吸特性及其重金屬結(jié)合形態(tài)的變化特征;采用小麥土壤盆栽試驗(yàn),研究了As污染土壤上植酸對(duì)植物體抗氧化酶系統(tǒng)和重金屬在植物體內(nèi)的分布變化的影響。獲得的主要結(jié)果如下:(1)自然湖泊梁子湖不同沉積物中,IP (Inorganic Phosphorus)含量占TP (Total Phosphorus)的40-71%,而OP (Organic Phosphorus)的含量比較低,僅占13%-45%。梁子湖入水口處IP的含量分布表現(xiàn)為,0.8 m以上沉積物部分為HCl-P≈NaOH-P,而0.8 m以下沉積物部分為HCl-PNaOH-P,而在出水口的趨勢(shì)相反。OP組分在梁子湖和月湖中都表現(xiàn)為MLOP MROPLOP.(2)分析磷素在不同年代沉積物中的積累特征發(fā)現(xiàn),在2ka.BP以來TP和植酸含量不斷增加,在2-4 ka.BP之間先迅速增加而后趨于穩(wěn)定,而8.6 ka.BP之前(4.5m以下)磷的含量處于較低水平,這一結(jié)果表明,沉積物中TP和植酸的含量變化可以較準(zhǔn)確的反映沉積物中磷的輸入歷史。(3)在城市湖泊月湖中,表層沉積物中TP的含量居民生活干擾區(qū)(YH1)明顯高于非生活干擾區(qū)(YH2)。月湖沉積物中IP的NaOH-P基本相當(dāng),但在居民生活干擾區(qū)表層HCl-P含量明顯高于非干擾區(qū)。月湖沉積物中OP主要是MLOP,各組分表現(xiàn)為MLOPLOP, MROP。月湖沉積物中植酸含量和植酸酶的活性隨深度的增加而逐漸降低,在表層土壤中(1m以上)生活干擾區(qū)植酸含量和植酸酶的活性均大于非干擾區(qū)。研究結(jié)果還表明在城市湖泊中的磷主要富集于表層沉積物中。(4)農(nóng)田土壤剖面磷素的分布特征分析表明,農(nóng)田土壤磷素均表現(xiàn)出強(qiáng)烈的淋溶并在土層中、深層積累的特征。梁子湖周邊兩種土壤(水稻土和旱地油菜)剖面的磷素積累特征基本一致,表現(xiàn)為磷素分別在表層(0.4m以上)和下層(1.4m以下)積累,而水稻土下層磷素積累明顯高于油菜田土壤。與沉積物不同,梁子湖區(qū)土壤IP含量NaOH-PHCl-P,而Q4母質(zhì)發(fā)育的2種菜地土壤(長(zhǎng)江沿岸)為HCl-P NaOH-P。與湖泊沉積物有機(jī)磷組分變化類似,土壤的有機(jī)磷亦表現(xiàn)出MLOPLOP, MROP的含量,其中MLOP含量變幅較大,是土壤有機(jī)磷的活躍形態(tài)。但各種土壤LOP和MROP的含量比湖泊沉積物顯著提高。值得注意的是,農(nóng)田土壤植酸含量明顯低于湖泊沉積物的植酸含量,但植酸酶活性與湖泊沉積物基本相當(dāng)。(5)植酸與重金屬以及礦物材料之間作用的批處理研究表明,植酸、重金屬離子和礦物材料相互作用顯著影響環(huán)境中重金屬的界面行為。四種礦物材料(鋼渣、含鐵錳礦、蒙脫石、針鐵礦)對(duì)3種重金屬(Cd、As、Zn)的最佳吸附溫度為25℃,吸附飽和時(shí)間為24h,四種礦物中鋼渣和鐵錳礦對(duì)重金屬的吸附效果最佳。植酸與Cd和As的絡(luò)合吸附過程降低了重金屬在礦物材料表面的吸附作用,其中對(duì)As、Cd吸附影響最大的蒙脫石,植酸濃度為2mM時(shí)蒙脫石對(duì)As和Cd的吸附率分別降低了100%和53%。而植酸與Zn的絡(luò)合沉淀過程反而增加了Zn與礦物材料的吸附作用,在四種礦物材料中,植酸的添加增加了礦物對(duì)Zn的吸附。(6)植酸、重金屬及不同類型土壤之間的相互作用研究發(fā)現(xiàn),添加植酸降低四種土壤(紅壤、灰潮土、褐土、黑土)對(duì)重金屬Cd和As的吸附,其中以紅壤和灰潮土最為明顯;同時(shí)植酸對(duì)四種土壤重金屬的解吸率最高可達(dá)98.8%。隨著添加植酸濃度的上升,Zn的吸附率升高而解吸率下降,且低于Cd和As的解吸率。(7)培養(yǎng)試驗(yàn)結(jié)果表明,加入植酸后,在酸性紅壤和黑土中,四種金屬As、Cd、Pb和Zn中隨著培養(yǎng)時(shí)間的延長(zhǎng)有效態(tài)含量逐漸升高,而堿性土壤灰潮土和褐土中四種重金屬的有效態(tài)逐漸下降。重金屬形態(tài)分析結(jié)果表明,Cd,Pb,Zn以可還原態(tài)和可交換態(tài)變化較大,而As以專性吸附、非專性吸附和殘?jiān)鼞B(tài)的變化最大。(8)在As污染土壤中,添加植酸可促進(jìn)小麥生長(zhǎng)。小麥體內(nèi)As的累積隨著植酸的添加有不同程度的降低(18.8%-98.9%)。添加植酸還顯著降低小麥葉片中MDA含量。
[Abstract]:With the rapid development of aquaculture in China, rich in phytic acid livestock waste into environment. At the same time, the rapid development of industry and the unreasonable fertilization led to the problem of heavy metal pollution in the soil of our country is becoming increasingly serious, resulting in barren farmland, water pollution phenomenon is not uncommon, seriously restricting the sustainable development of our agriculture and social economy excellent. Phytic acid as chelating agent and antioxidant in food, performance can not be ignored in chemical industry and heavy metal pollution. With the continuous progress of science and technology, phytic acid determination technology provides a powerful means for the maturity of phytic acid behavior in the environment. In recent years, heavy metals and phytic acid in environmental media the role has become a hot research topic in this research. Through field investigation, discusses the distribution characteristics of typical farmland and phytase in freshwater ecosystem, phosphorus and plant The distribution behavior and speciation of acid; through laboratory batch experiments of phytic acid in combination with morphological change characteristics in the adsorption and desorption of heavy metals and mineral materials and soil interface; the wheat soil pot experiment to study the effects of As on soil pollution of phytic acid on plant antioxidant enzymes and the distribution of heavy metals in plants of the change. The main results are as follows: (1) the natural lake Liangzi Lake Sediments in different IP (Inorganic, Phosphorus) TP (Total Phosphorus) in 40-71% OP (Organic Phosphorus), and the content is relatively low, accounting for only 13%-45%. content distribution in entrance IP, above 0.8 m sediment part is HCl-P about NaOH-P, below the 0.8 m sediment part is HCl-PNaOH-P, and the water outlet opposite to the trend of the.OP component in the lake in Liangzi Lake and had MLOP MROPLOP. (2) Analysis of the characteristics of phosphorus accumulation was found in different age sediments, in 2ka.BP since TP and phytic acid content increased, in 2-4 ka.BP increased rapidly at first and then tended to be stable, and before 8.6 ka.BP (below 4.5m) phosphorus content in the low level, the results show that the content changes of TP and phytic acid in sediment the input can accurately reflect the history of phosphorus in the sediments. (3) in the city of Lake Lake, surface sediments and the content of TP in the living area interference (YH1) was significantly higher than that of non life interference area (YH2). NaOH-P based IP in the lake sediments, but residents in the surface life interference area HCl-P content was significantly higher than that of non interference area. Lake sediment OP MLOP is the main component, the performance of the MLOPLOP, increasing phytic acid content and phytase activity in MROP. lake sediments with depth gradually decreased, in the surface soil (1m) dry life Rejection zone phytic acid content and phytase activity were higher than in non disturbing region. The results also show that in the city of lake of phosphorus enriched in the surface sediments. (4) the soil profile of phosphorus distribution analysis showed that soil phosphorus showed strong leaching in soil layer, characteristic of deep accumulation. Two kinds of soil surrounding Liangzi Lake (paddy soil and upland rape) section of the phosphorus accumulation characteristics of consistent performance for phosphorus in the surface (above 0.4m) and lower (below 1.4m) and lower accumulation of paddy soil phosphorus accumulation was significantly higher than that of the oil and sediment of different vegetable soil. Soil IP NaOH-PHCl-P, Liangzihu district the content of Q4, and the development of 2 kinds of soil parent materials (NaOH-P. and HCl-P along the Yangtze River) for lake sediment organic phosphorus fractions were similar, organic phosphorus in soil also showed MLOPLOP, MROP content, MLOP content varied greatly That is the active soil organic phosphorus forms. But the content of various soil LOP and MROP ratio in lake sediments increased significantly. It is worth noting that the phytic acid content in farmland soil was significantly lower than the phytic acid content in lake sediments, but the phytase activity and lake sediments is quite basic. (5) a batch study of interaction of phytic acid and heavy metals and mineral materials show that phytic acid, the interaction between heavy metal ions and mineral materials significantly affect the interfacial behavior of heavy metals in the environment. Four kinds of mineral materials (steel slag, iron ore, montmorillonite, goethite) of 3 heavy metals (Cd, As, Zn) the best adsorption temperature is 25 DEG C, the saturated adsorption time is 24h, the adsorption effect of four for manganese slag and iron minerals in the heavy metal complexation. The best adsorption process of phytic acid and Cd and As decreased the adsorption of heavy metals in the mineral surface, in which the As Cd, the greatest impact of montmorillonite adsorption Phytic acid, when the concentration of 2mM montmorillonite adsorption on As and Cd rate were decreased by 100% and 53%. and Zn and phytic acid precipitation and complexation process but increased the adsorption of Zn and mineral materials, in four kinds of mineral materials, adding phytic acid to increase the adsorption of Zn minerals. (6) study on Phytic acid interaction between different types of heavy metals in the soil and found that adding the phytic acid of four kinds of soil decreased (red soil, grey fluvo aquic soil, cinnamon soil, black soil) adsorption of heavy metals Cd and As, with red and grey fluvo aquic soil was the most obvious; at the same time of phytic acid on four kinds of soil heavy metal desorption rate of up to 98.8%. with the increase of adding phytic acid the concentration of Zn, the adsorption rate increased while desorption rate decreased, and lower than the desorption of Cd and As. (7) the results showed that adding phytic acid, in acid red soil and black soil, four kinds of metal As, Cd, Pb and Zn with the training time available content Increased gradually, and the effective state of four kinds of heavy metals in alkaline soil and cinnamon soil in grey fluvo aquic soil decreased gradually. Heavy metal speciation analysis showed that Cd, Pb, Zn in reducible and exchangeable changes greatly, while As with specific adsorption, change of non specific adsorption and residual maximum (8). In As polluted soil, adding phytic acid can promote the growth of wheat. The accumulation of As in Wheat with adding phytic acid decreased (18.8%-98.9%). Adding phytic acid also significantly reduced MDA content in wheat leaves.
【學(xué)位授予單位】:華中農(nóng)業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:X132;S151.9
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 俞永剛;礦物材料的研制與開拓大有可為[J];中國非金屬礦工業(yè)導(dǎo)刊;2000年01期
2 劉曙光;礦物材料與高技術(shù)產(chǎn)業(yè)的發(fā)展[J];淄博學(xué)院學(xué)報(bào)(自然科學(xué)與工程版);2000年03期
3 李藝;特種礦物材料的應(yīng)用與發(fā)展[J];礦產(chǎn)綜合利用;2001年03期
4 楊華明,周燦偉,杜春芳,邱冠周,王淀佐;基于資源—材料一體化的功能礦物材料開發(fā)與應(yīng)用[J];中國非金屬礦工業(yè)導(dǎo)刊;2004年05期
5 彭同江;我國礦物材料的研究現(xiàn)狀與發(fā)展趨勢(shì)[J];中國礦業(yè);2005年01期
6 廖立兵;;礦物材料的定義與分類[J];硅酸鹽通報(bào);2010年05期
7 陳豐;礦物材料研究簡(jiǎn)況[J];地質(zhì)地球化學(xué);1988年05期
8 汪靈,張振禹,葉大年;礦物材料及礦物材料學(xué)[J];建材地質(zhì);1995年02期
9 ;礦物材料研究現(xiàn)狀及發(fā)展前景[J];礦產(chǎn)與地質(zhì);1999年01期
10 李博文 ,何明生 ,李建保;礦物材料的前景展望[J];中國建材;2001年06期
相關(guān)會(huì)議論文 前10條
1 楊華明;周燦偉;杜春芳;邱冠周;王淀佐;;基于資源—材料一體化的功能礦物材料開發(fā)與應(yīng)用[A];非金屬礦物材料—環(huán)保、生態(tài)與健康研討會(huì)論文專輯[C];2004年
2 徐文p,
本文編號(hào):1607067
本文鏈接:http://sikaile.net/shoufeilunwen/nykjbs/1607067.html