外源酚酸對貝達葡萄植株生長及根際土壤微生物作用機制研究
本文選題:貝達 切入點:葡萄 出處:《沈陽農業(yè)大學》2016年博士論文 論文類型:學位論文
【摘要】:化感自毒作用和土壤生物因素是導致葡萄連作障礙的主要原因,為了探究酚酸類葡萄自毒物質對土壤微生物的作用機制,本研究以我國北方生產上常用的葡萄砧木‘貝達’(V.riparia×V.labrusca cv. Beta)為試材,采用盆栽避雨栽培,在未栽植貝達葡萄和栽植貝達葡萄的土壤中添加葡萄自毒物質對羥基苯甲酸或水楊酸,測定酚酸類物質在土壤中的含量變化及其對土壤微生物種群結構和功能多樣性的影響,分析酚酸類自毒物質對土壤微生物的作用模式,并進一步追蹤對羥基苯甲酸進入土壤后的轉化產物,定位參與其代謝的功能微生物,以期明確酚酸類物質對貝達葡萄根際土壤微生物作用機制。試驗主要結果如下:1.外源對羥基苯甲酸或水楊酸處理影響了貝達葡萄盆栽苗的生長和根系分泌酚酸的含量。對羥基苯甲酸和水楊酸對貝達葡萄盆栽苗的生長表現(xiàn)為低促高抑的作用。0.5mg·g-1對羥基苯甲酸或0.25mg·g-1和0.5mg·g-1水楊酸促進了貝達葡萄盆栽苗的生長發(fā)育,1.Omg·g-1、2mg·g-1對羥基苯甲酸或1.Omg·g-1、1.5mg·g-1、2mg·g-1水楊酸處理則起抑制作用;對羥基苯甲酸處理后,貝達葡萄根系分泌的對羥基苯甲酸含量增加,而水楊酸處理后,貝達葡萄根系分泌的水楊酸含量減少。2.外源對羥基苯甲酸和水楊酸處理降低了貝達葡萄根際土壤中兩種酚酸的含量。本試驗研究發(fā)現(xiàn),貝達葡萄根際土壤中對羥基苯甲酸或水楊酸含量高于未栽植貝達葡萄土壤,表明貝達葡萄通過根系分泌對羥基苯甲酸或水楊酸物增加了其在土壤中含量。而施入對羥基苯甲酸或水楊酸處理后,貝達葡萄根際土壤中的對羥基苯甲酸或水楊酸含量低于未栽植貝達葡萄的土壤,該結果表明外源對羥基苯甲酸或水楊酸可能影響了貝達葡萄根系的分泌特性,改變了土壤微生物種群的結構和功能,間接影響了對羥基苯甲酸或水楊酸在土壤中的含量。3.外源對羥基苯甲酸或水楊酸會快速被土壤吸附和微生物分解轉化,72h時對羥基苯基酸的殘留量為添加量的0.003%-0.09%,水楊酸的殘留量為添加量的5.4%-23.5%。4.對羥基苯甲酸在貝達葡萄根際土壤中發(fā)生生物轉化形成二聚體。與對照相比,在對羥基苯甲酸處理后6h的貝達葡萄根際土壤中,檢測到新的負離子峰(m/z=273.039181),并且直到處理后68h仍能檢測到該離子峰的存在,初步認定這種物質為二聚體。5.外源對羥基苯甲酸或水楊酸改變了土壤微生物功能多樣性、土壤細菌和真菌群落結構多樣性,并且對未栽植和栽植貝達葡萄的土壤影響效應不同。與未栽植貝達葡萄土壤相比,在栽植貝達葡萄土壤中1mg·g-1和2mg·g-1對羥基苯甲酸處理后的細菌群落結構多樣性較高,真菌群落結構多樣性較低,而0.5mg·g-1處理后土壤細菌和真菌的群落結構多樣性都有所提高;與未栽植貝達葡萄土壤相比,各濃度的水楊酸處理均使栽植貝達葡萄土壤中的細菌群落結構多樣性升高,真菌群落結構多樣性降低。6.本研究共定位了14個類群的微生物參與了對羥基苯甲酸在貝達葡萄根際土壤中的轉化包括甲基養(yǎng)菌屬(Methylibium)、貪銅菌屬(Cupriavidus)、沙壤土桿菌屬(Ramlibacter)芽殖球菌屬(Blastococcus)、軍團菌屬(Legionella)、嗜甲基菌屬(Methylophilus)、節(jié)桿菌屬(Arthrobacter)、固氮彎曲菌屬(Azoarcus)、固氮菌屬(Azotobacter)、新鞘氨醇菌屬(Novosphingobium)、假單胞菌屬(Pseudomonas)、和福格斯氏菌屬(Vogesella)、溶桿菌屬(Lysobacter)和嗜甲基菌科(Methylophilaceae_uncultured),其中后8種類型可能參與了N素在土壤中的轉化。7.本研究分離并篩選出以對羥基苯甲酸為碳源的真菌5株,以水楊酸為碳源的真菌5株。以對羥基苯甲酸為碳源的5株真菌分別為細極鏈格孢菌屬(Alternaria tenuissima)、青霉菌屬(Penicillium sp.)、小克銀漢霉菌屬(Cunninghamella elegans)、木霉屬(Trichoderma harzianum)和產黃青霉屬(Penicillium chrysogenum);以水楊酸為碳源的5株真菌分別為細極鏈格孢菌屬(Alternaria tenuissima)、木霉屬(Trichoderma)、青霉菌屬(Penicillium)、尖孢鐮刀菌屬(Fusarium oxysporum)和毛霉菌屬(Mucor circinelloides)。其中細極鏈格孢菌屬(Alternaria tenuissima)對對羥基苯甲酸或水楊酸的平均代謝效率最高,并對貝達葡萄盆栽苗的生長表現(xiàn)出抑制作用,貝達葡萄植株的株高、莖粗和地上鮮重分別下降了14.92%、2.76%和16.82%。
[Abstract]:The allelopathic effects and soil biological factors is the main cause of grape replanting obstacle, in order to explore the mechanism of phenolic acids in grape from toxic substances on soil microorganisms, the study in northern China produced the common grape rootstock 'beta' (V.riparia * V.labrusca cv. Beta) as test materials, using pot cultivation. Add the grape autotoxin p-hydroxybenzoic acid or salicylic acid before planting and planting grapes Beida Beida grape soil, determination of content changes of phenolic acids in soil and its influence on the diversity of soil microbial community structure and function, analysis of phenolic acids from the mode of action of toxic substances on soil microorganisms, and further to track conversion products of hydroxy benzoic acid in soil, microorganisms involved in its metabolism function positioning, in order to clarify the effects of phenolic acids on rhizosphere soil microbes in Beida grapes The mechanism. The main results are as follows: 1. exogenous p-hydroxybenzoic acid or salicylic acid treatment of Beida grape potted seedling growth and root content of phenolic acid secretion. On growth performance of hydroxy benzoic acid and salicylic acid on Beida grape potted seedlings of p-hydroxybenzoic acid or 0.25mg - g-1 and 0.5mg - g-1 salicylic acid promoted the Beida grape pot seedling growth promotion in low high suppression role of.0.5mg - g-1, 1.Omg - g-1,2mg - g-1 hydroxybenzoic acid or 1.Omg - g-1,1.5mg - g-1,2mg - g-1 salicylic acid inhibited; p-hydroxybenzoic acid, Beida grape root exudates of p-hydroxybenzoic acid content increased, while salicylic acid, salicylic acid the content of Beida grape root exudates reduce exogenous.2. decreased the content of two kinds of grape rhizosphere soil phenolic acids of beta hydroxy benzoic acid and salicylic acid. The study found that Beida grape The grapes in the rhizosphere soil of p-hydroxybenzoic acid or salicylic acid content was higher than that of soil planting Beida grape, Beida grape root exudates by p-hydroxybenzoic acid or salicylic acid were added to its content in the soil. And the application of p-hydroxybenzoic acid or salicylic acid, grape rhizosphere soil in beta hydroxy benzoic acid or the content of salicylic acid was less than the planting of Beida grape soil, the results indicated that the exogenous may affect the secretion characteristics of Beida grape root p-hydroxybenzoic acid or salicylic acid, change the structure and function of soil microbial population, the indirect influence on the content of exogenous.3. hydroxy benzoic acid or salicylic acid in soil p-hydroxybenzoic acid or salicylic acid will fast soil adsorption and microbial decomposition, 72h hydroxybenzoic acid residues as the amount of 0.003%-0.09% added, the amount of salicylic acid residues for 5.4%-2 Biotransformation of 3.5%.4. two dimer formation of p-hydroxybenzoic acid in grape rhizosphere soil. It compared with the control, the Beida grape rhizosphere soil 6h hydroxybenzoic acid after treatment, detected negative ion peak of the new (m/z=273.039181), and until after 68H treatment can still detect the ion peak the existence of this material is initially identified two dimer.5. exogenous p-hydroxybenzoic acid or salicylic acid changed the microbial diversity of soil bacteria and fungi community structure diversity, and the effects of soil on planting and planting of Beida grape is different. Compared with non cultivated soil in Beida grape planting soil, Beida grape in 1mg - g-1 and 2mg - g-1 on bacterial community structure hydroxybenzoic acid treated higher diversity, fungal community structure diversity is low, while the 0.5mg g-1 after the treatment of community structure of soil bacteria and fungi diversity Increased; compared with the planting of Beida grape soil, the concentration of salicylic acid showed that planting Beida grape in soil bacterial diversity increased, fungal community structure diversity decreased.6. the co localization of 14 kinds of microbes involved in the conversion of hydroxy benzoic acid in the rhizosphere soil of Beida grape a genus including methyl (Methylibium), cupriaridus sp. (Cupriavidus), sandy loam bacillus (Ramlibacter) budding coccus (Blastococcus), Legionella (Legionella), the genus methylophilus (Methylophilus), Arthrobacter sp. (Arthrobacter), nitrogen (Azoarcus), Campylobacter genus Azotobacter (Azotobacter), novosphingobium genus (Novosphingobium), Pseudomonas sp. (Pseudomonas), and Fuchs's genus (Vogesella), Lysobacter spp. (Lysobacter) and methylophilus Department (Methylophilaceae_uncultured), after which the 8 types of May participate in the N isolated in this study in the transformation of.7. in soil and screened by p-hydroxybenzoic acid as carbon source, 5 strains of fungi, with salicylic acid as carbon source, 5 strains of fungi. P-hydroxy benzoic acid as carbon source, 5 strains of fungi were Alternaria tenuissima (genus Alternaria tenuissima), Penicillium (Penicillium sp.), Cunninghamella blakesleana (Cunninghamella elegans), belonging to the genus Trichoderma (Trichoderma harzianum) and Penicillium chrysogenum (Penicillium chrysogenum); using salicylic acid as carbon source, 5 strains of fungi were Alternaria tenuissima (genus Alternaria, genus Trichoderma (tenuissima) Trichoderma) (Penicillium), Penicillium, Fusarium oxysporum genus (Fusarium oxysporum) and Mucor (Mucor circinelloides). The genus Alternaria tenuissima (Alternaria tenuissima) of p-hydroxybenzoic acid or salicylic acid the average metabolic efficiency is the highest, and the Beida grape seedlings The growth was inhibited, Beida grape plant height, stem diameter and fresh weight were decreased by 14.92%, 2.76% and 16.82%.
【學位授予單位】:沈陽農業(yè)大學
【學位級別】:博士
【學位授予年份】:2016
【分類號】:S663.1
【參考文獻】
相關期刊論文 前10條
1 張放;;2014年我國水果生產統(tǒng)計分析(二)[J];中國果業(yè)信息;2016年01期
2 張放;;2014年我國水果生產統(tǒng)計分析(一)[J];中國果業(yè)信息;2015年12期
3 陳立華;常義軍;王長春;邵孝侯;繆其松;;枯草芽孢桿菌D9生物有機肥對連作蘆蒿扦插苗枯萎病病害防控研究[J];農業(yè)資源與環(huán)境學報;2016年01期
4 和文祥;李天倫;田霄鴻;耿增超;;基于土壤酶的酚酸類化感物質效應研究[J];西北農業(yè)學報;2015年06期
5 王西銳;;獼猴桃重茬栽植障礙問題探討[J];西北園藝(果樹);2015年03期
6 李俊芝;王功帥;胡艷麗;陳學森;毛志泉;;幾種低分子量有機酸對連作平邑甜茶幼苗光合與根系生長的影響[J];園藝學報;2014年12期
7 夏圍圍;賈仲君;;高通量測序和DGGE分析土壤微生物群落的技術評價[J];微生物學報;2014年12期
8 吳林坤;林向民;林文雄;;根系分泌物介導下植物-土壤-微生物互作關系研究進展與展望[J];植物生態(tài)學報;2014年03期
9 馬紅梅;陳永敢;徐小雄;張耀輝;;靈芝連作障礙的土壤微生態(tài)研究[J];山東農業(yè)大學學報(自然科學版);2013年04期
10 李勇;胡陳云;丁萬隆;劉敏;;自毒物質脅迫對人參根系分泌物組成的影響[J];世界科學技術-中醫(yī)藥現(xiàn)代化;2013年07期
相關博士學位論文 前3條
1 田給林;連作草莓土壤酚酸類物質的化感作用及其生物調控研究[D];中國農業(yè)大學;2015年
2 張江紅;酚類物質對蘋果的化感作用及重茬障礙影響機理的研究[D];山東農業(yè)大學;2005年
3 吳鳳芝;外源酚酸對黃瓜自毒作用的生理生化機制研究[D];東北農業(yè)大學;2002年
相關碩士學位論文 前5條
1 徐文鳳;環(huán)渤海灣地區(qū)重茬蘋果園土壤真菌群落多樣性及生防真菌的篩選[D];山東農業(yè)大學;2011年
2 楊陽;外源酚酸對歐美楊Ⅰ-107水培幼苗形態(tài)與生理生化特性的影響[D];山東農業(yè)大學;2010年
3 杜霄霞;草莓酚酸類自毒物質降解菌篩選及對草莓防病促生作用研究[D];西北農林科技大學;2009年
4 閔曉芳;柑橘采后致病青霉的分離鑒定及其生物學特性研究[D];華中農業(yè)大學;2007年
5 杜國營;黃瓜根系分泌物中化感物質的鑒定及其生物降解研究[D];河南農業(yè)大學;2006年
,本文編號:1567765
本文鏈接:http://sikaile.net/shoufeilunwen/nykjbs/1567765.html