典型農(nóng)田土壤微生物宏基因組及對人為擾動的響應(yīng)研究
本文關(guān)鍵詞: 宏基因組學(xué) Geo Chip 微生物群落 人為擾動 土壤功能過程 出處:《清華大學(xué)》2016年博士論文 論文類型:學(xué)位論文
【摘要】:微生物是生物地球化學(xué)循環(huán)的主要驅(qū)動者,對甲烷、二氧化碳和氧化亞氮等溫室氣體的排放起調(diào)節(jié)作用。氣候變化影響微生物群落組成,而微生物所產(chǎn)生的溫室氣體、碳庫和氮庫的變化反過來調(diào)節(jié)氣候。因此,氣候變化與微生物之間形成環(huán)形的反饋機(jī)制。但是,微生物調(diào)節(jié)氣候變化的反饋機(jī)制尚不明確。另外,土壤類型是否影響微生物對種植植物和施肥的響應(yīng)還不清楚;谝陨蠁栴},本論文研究了黑龍江海倫站的黑土、河南封丘站的潮土和江西鷹潭站的紅壤中的微生物群落組成。2005年,三個站點(diǎn)的土壤被相互移位,利用空間代替時間的概念模擬了環(huán)境變化。暨2006年起,每年在原位和移位土壤中種植玉米及施氮磷鉀肥。2009年,取黑土在原位和移位樣點(diǎn)中的裸土和種植玉米土樣,利用Geo Chip 3.0、變性梯度凝膠電泳和磷脂脂肪酸研究環(huán)境變化和種植玉米對微生物群落組成和功能基因的影響。結(jié)果表明,微生物功能基因多樣性、微生物生物量、土壤養(yǎng)分含量和氮循環(huán)功能過程都隨往南移位而增加。然而,土壤移位對微生物功能基因群落組成的影響被種植玉米掩蓋。2011年,取三種土壤在原位和移位點(diǎn)中的裸土、種植玉米和施肥的土樣,利用Illumina Mi Seq測序及Geo Chip技術(shù),研究細(xì)菌、真菌和功能基因群落的組成。得到如下試驗(yàn)結(jié)果:一,不同土壤類型的微生物生物量和群落組成明顯不同。土壤p H值、總磷、總鉀和年降雨量可以用于解釋微生物群落組成。種植玉米改變紅壤中的細(xì)菌組成和黑土中的真菌組成,但是對潮土中的微生物組成影響較小。二,施肥導(dǎo)致土壤酸化,黑土和紅壤中的微生物群落組成的改變與土壤p H值顯著相關(guān);然而,潮土中微生物組成沒有因施肥而改變,與土壤p H值也沒有相關(guān)性。三,真菌對環(huán)境變化的敏感性高于細(xì)菌。對2009年和2011年的樣品進(jìn)行相關(guān)性分析,發(fā)現(xiàn)裸土中的碳循環(huán)基因豐度與呼吸通量強(qiáng)烈相關(guān),氮循環(huán)基因與硝化潛力顯著相關(guān),為理解這兩個功能過程提供了機(jī)理解釋,增強(qiáng)了微生物群落在溫室氣體排放模型中的應(yīng)用潛力。
[Abstract]:Microbes are the main drivers of biogeochemical cycle, which regulate the emission of methane, carbon dioxide and nitrous oxide. Climate change affects the composition of microbial communities. Changes in greenhouse gases, carbon and nitrogen pools produced by microorganisms, in turn, regulate the climate. Thus, there is a circular feedback mechanism between climate change and microbes. The feedback mechanism of microbes regulating climate change is not clear. In addition, it is not clear whether soil types affect the response of microorganisms to planting plants and fertilization. In this paper, the composition of microbial communities in the black soil of Helene station in Heilongjiang, the tidal soil in Fengqiu station in Henan Province and the red soil in Yingtan station in Jiangxi Province were studied. In 2005, the soil of the three stations was shifted to each other. The change of environment was simulated by the concept of space instead of time. Since 2006, maize and nitrogen, phosphorus and potassium fertilizer were planted in situ and in shifting soil every year. 2009. Geo Chip 3.0 was used to take the bare soil of black soil in situ and in situ and maize planting soil samples. Denaturing gradient gel electrophoresis and phospholipid fatty acids were used to study the environmental changes and the effects of maize cultivation on microbial community composition and functional genes. The results showed that microbial functional gene diversity and microbial biomass. Soil nutrient content and nitrogen cycling function increased with southward translocation. However, the effect of soil translocation on the composition of microbial functional gene community was masked by maize planting. 2011. The naked soil of three kinds of soils in situ and translocation sites were used to plant maize and fertilized soil samples. Illumina Mi Seq sequencing and Geo Chip technique were used to study bacteria. The composition of fungi and functional gene communities. The following results were obtained: first, the microbial biomass and community composition of different soil types were significantly different. Total potassium and annual rainfall can be used to explain the composition of microbial community. Maize can change the composition of bacteria in red soil and fungi in black soil, but have little effect on the composition of microorganisms in fluvo-soil. Soil acidification was induced by fertilization, and the change of microbial community composition in black soil and red soil was significantly related to soil pH value. However, microbial composition did not change with fertilization, and there was no correlation with soil pH. The sensitivity of fungi to environmental changes was higher than that of bacteria. The correlation analysis between 2009 and 2011 showed that carbon cycle gene abundance in bare soil was strongly correlated with respiratory flux. Nitrogen cycling genes were significantly correlated with nitrification potential, which provided a mechanism for understanding these two functional processes and enhanced the application potential of microbial communities in greenhouse gas emission models.
【學(xué)位授予單位】:清華大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:S154.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王健;刁治民;張靜;馬壽福;;土壤微生物在促進(jìn)植物生長方面的作用與發(fā)展前景[J];青海草業(yè);2006年04期
2 林先貴;陳瑞蕊;胡君利;;土壤微生物資源管理、應(yīng)用技術(shù)與學(xué)科展望[J];生態(tài)學(xué)報(bào);2010年24期
3 杝冿癸;;中W科[x院土壤微生物[x座娗g和我W土壤微生物[xv|展概況[J];科學(xué)通報(bào);1954年09期
4 ;666粉劑對土壤微生物有什么影響[J];昆蟲知識;1958年05期
5 ;灌溉對土壤微生物有什么影響[J];水文月刊;1960年05期
6 閔三弟,章家騏,盧善玲,蔣筱仙;鎘對土壤微生物影響的研究[J];農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào);1983年02期
7 莊鐵誠,林鵬;紅樹林凋落葉自然分解過程中土壤微生物生理類群的變化[J];廈門大學(xué)學(xué)報(bào)(自然科學(xué)版);1993年06期
8 張德明,陳章和,林麗明,黃群聲;白云山土壤微生物的季節(jié)變化及其對環(huán)境污染的反應(yīng)[J];生態(tài)科學(xué);1998年01期
9 田育軍,林杉,趙篤樂,吳文良,胡恒覺;長期不同施肥土壤微生物態(tài)氮作為土壤供氮指標(biāo)的研究[J];甘肅農(nóng)業(yè)大學(xué)學(xué)報(bào);2000年01期
10 于建壘,宋國春,萬魯長,曹德強(qiáng),于迎春;苯黃隆對土壤微生物的影響研究[J];微生物學(xué)雜志;2000年03期
相關(guān)會議論文 前10條
1 劉蕓;許發(fā)倫;廖家莉;劉寧;楊遠(yuǎn)友;李磊;;土壤微生物的篩分及對鈾的吸附行為研究[A];第九屆全國核化學(xué)與放射化學(xué)學(xué)術(shù)研討會論文摘要集[C];2010年
2 王仁卿;張明才;;土壤微生物多樣性研究現(xiàn)狀評述[A];面向21世紀(jì)的中國生物多樣性保護(hù)——第三屆全國生物多樣性保護(hù)與持續(xù)利用研討會論文集[C];1998年
3 嚴(yán)君;韓曉增;王守宇;;黑土不同植被覆蓋與施肥下土壤微生物的變化特征[A];第四次全國土壤生物和生物化學(xué)學(xué)術(shù)研討會論文集[C];2007年
4 林先貴;;土壤微生物分子生態(tài)學(xué)與經(jīng)典生物學(xué)的和諧發(fā)展[A];中國土壤學(xué)會第十一屆全國會員代表大會暨第七屆海峽兩岸土壤肥料學(xué)術(shù)交流研討會論文集(下)[C];2008年
5 佘文文;姚俊;;等溫微量熱法研究原油污染對土壤微生物的影響[A];第三屆泛環(huán)渤海(七省二市)生物化學(xué)與分子生物學(xué)會——2012年學(xué)術(shù)交流會論文集[C];2012年
6 王金花;朱魯生;王軍;謝慧;;4種典型抗生素對土壤微生物呼吸的影響[A];十一五農(nóng)業(yè)環(huán)境研究回顧與展望——第四屆全國農(nóng)業(yè)環(huán)境科學(xué)學(xué)術(shù)研討會論文集[C];2011年
7 崣震av;;臺pc土壤微生物研究之怤去,
本文編號:1486207
本文鏈接:http://sikaile.net/shoufeilunwen/nykjbs/1486207.html