固體中光脈沖橫向信息相干操控的研究
本文關(guān)鍵詞:固體中光脈沖橫向信息相干操控的研究 出處:《吉林大學(xué)》2016年博士論文 論文類(lèi)型:學(xué)位論文
更多相關(guān)文章: 電磁感應(yīng)光透明 慢光效應(yīng) 四波混頻 慢光圖像轉(zhuǎn)移 光存儲(chǔ) 空間相干性保持
【摘要】:隨著人類(lèi)的文明邁入21世紀(jì),傳統(tǒng)的信息技術(shù)已經(jīng)不能夠滿(mǎn)足人們?nèi)找嬖鲩L(zhǎng)的需要。伴隨著量子效應(yīng)的出現(xiàn),人們逐漸意識(shí)到量子信息領(lǐng)域的發(fā)展將左右著人類(lèi)文明的進(jìn)步。而量子信息領(lǐng)域的發(fā)展始終離不開(kāi)量子操控技術(shù)的進(jìn)步,同時(shí)對(duì)量子存儲(chǔ)認(rèn)識(shí)的加深也促進(jìn)了量子信息領(lǐng)域的完善。量子信息網(wǎng)絡(luò)的構(gòu)建是人類(lèi)進(jìn)入量子信息時(shí)代的前提,而如何實(shí)現(xiàn)光子的有效操控和存儲(chǔ)則是構(gòu)建量子信息網(wǎng)絡(luò)的基礎(chǔ)。由于固體介質(zhì)自身的諸多優(yōu)良特性,使得其更有利于進(jìn)行光操控和光存儲(chǔ)實(shí)驗(yàn),同時(shí)固體介質(zhì)也比氣體介質(zhì)更適合構(gòu)建量子信息網(wǎng)絡(luò)。綜合各方面的因素,我們最終選擇在固體介質(zhì)中開(kāi)展了關(guān)于光操控與光存儲(chǔ)方面的研究工作。本文的主要研究?jī)?nèi)容為:1.在低溫狀態(tài)下的Pr:YSO晶體中實(shí)現(xiàn)了基于慢光四波混頻效應(yīng)的光學(xué)圖像信息直接轉(zhuǎn)移與全光學(xué)操控。在這一部分我們利用一個(gè)三縫光欄將光學(xué)圖像信息編入探測(cè)場(chǎng)光脈沖之中,并通過(guò)調(diào)制探測(cè)場(chǎng)與控制場(chǎng)的光脈沖參數(shù),使它們?cè)诘蜏貭顟B(tài)下的Pr:YSO晶體中發(fā)生電磁感應(yīng)光透明效應(yīng)。在電磁感應(yīng)光透明效應(yīng)的影響下,攜帶有光學(xué)圖像信息的探測(cè)場(chǎng)光脈沖在晶體中被減慢,同時(shí)我們通過(guò)CCD傳感器獲得了減慢之后的探測(cè)場(chǎng)光脈沖所攜帶的光學(xué)圖像信息。當(dāng)探測(cè)場(chǎng)光脈沖處于慢光狀態(tài)時(shí),我們給晶體中的電磁感應(yīng)光透明系統(tǒng)額外添加了一個(gè)控制場(chǎng)光脈沖,同時(shí)通過(guò)改變這一控制場(chǎng)光脈沖的脈沖參數(shù),使處于慢光狀態(tài)的探測(cè)場(chǎng)光脈沖在晶體中經(jīng)歷四波混頻效應(yīng)并生成了一個(gè)全新的信息通道。我們對(duì)這一全新信息通道中的光脈沖信息進(jìn)行采集,并與原信息通道中的光脈沖信息進(jìn)行對(duì)比,發(fā)現(xiàn)兩個(gè)信息通道中的光學(xué)圖像信息基本一致。該實(shí)驗(yàn)結(jié)果表明在Pr:YSO晶體中慢光圖像信息可以不經(jīng)歷存儲(chǔ)等操作而直接在信息通道之間發(fā)生轉(zhuǎn)移。之后我們通過(guò)改變額外加入的控制場(chǎng)光脈沖的強(qiáng)度,發(fā)現(xiàn)隨著外加控制場(chǎng)光脈沖強(qiáng)度的增加,新信息通道中的圖像強(qiáng)度也同步增加并且原信息通道中的圖像強(qiáng)度同步減少,這表明可以通過(guò)改變外加控制場(chǎng)光脈沖的強(qiáng)度來(lái)對(duì)慢光圖像在信息通道間的絕熱轉(zhuǎn)移進(jìn)行全光學(xué)的操控。最后我們還分析了兩個(gè)信息通道中圖像之間的相似度,證明了慢光圖像信息在絕熱轉(zhuǎn)移和全光學(xué)操控的過(guò)程中可以始終保持著較高的相似性。2.驗(yàn)證了雙光脈沖的橫向空間相干性在固體介質(zhì)慢光存儲(chǔ)過(guò)程中可以被保持下來(lái),并且存儲(chǔ)時(shí)間不會(huì)改變橫向空間相干性的保持情況。在這一部分我們通過(guò)改變控制場(chǎng)光脈沖和兩束探測(cè)場(chǎng)光脈沖的脈沖參數(shù),首先在低溫狀態(tài)下的Pr:YSO晶體中實(shí)現(xiàn)了兩束探測(cè)場(chǎng)光脈沖的慢光效應(yīng),并使這兩束探測(cè)場(chǎng)光脈沖在射出晶體之后于CCD傳感器上發(fā)生干涉。通過(guò)其干涉圖樣和干涉圖樣強(qiáng)度分布曲線我們得知經(jīng)歷慢光效應(yīng)的雙光脈沖干涉模式與楊氏干涉模式基本相同。之后我們使控制場(chǎng)光脈沖絕熱的關(guān)斷并于一小段時(shí)間后再次開(kāi)啟,從而實(shí)現(xiàn)了兩束探測(cè)場(chǎng)光脈沖在低溫晶體中的存儲(chǔ)與釋放。通過(guò)改變控制場(chǎng)光脈沖的關(guān)斷時(shí)間,我們獲得了不同存儲(chǔ)時(shí)間下兩個(gè)釋放脈沖之間的干涉圖樣,通過(guò)對(duì)干涉圖樣進(jìn)行數(shù)據(jù)處理與分析,我們進(jìn)一步獲得了干涉圖樣在水平方向上的強(qiáng)度分布曲線以及干涉可見(jiàn)度(The Interference Visibility)。從存儲(chǔ)前后以及不同存儲(chǔ)時(shí)間下雙光脈沖的干涉圖樣、強(qiáng)度分布曲線以及干涉可見(jiàn)度對(duì)比中,我們發(fā)現(xiàn)它們之間始終具有高度的一致性,這說(shuō)明存儲(chǔ)過(guò)程不會(huì)改變兩個(gè)光脈沖之間的空間干涉模式。據(jù)此我們論證了在Pr:YSO晶體中,基于電磁感應(yīng)光透明的慢光存儲(chǔ)過(guò)程能夠保持雙光脈沖的橫向空間相干性,同時(shí)存儲(chǔ)時(shí)間不會(huì)改變雙光脈沖橫向空間相干性的保持情況。最后在整個(gè)存儲(chǔ)效應(yīng)的持續(xù)時(shí)間內(nèi),我們研究了兩個(gè)釋放脈沖干涉圖樣的干涉可見(jiàn)度隨存儲(chǔ)時(shí)間的變化情況,發(fā)現(xiàn)干涉可見(jiàn)度幾乎不隨存儲(chǔ)時(shí)間而變化并且始終保持在一個(gè)較高的數(shù)值上。這表明在整個(gè)存儲(chǔ)時(shí)間內(nèi)兩個(gè)釋放脈沖之間始終具有良好的干涉狀態(tài),干涉圖樣具有較高的辨識(shí)度,亦證明在整個(gè)存儲(chǔ)過(guò)程中雙光脈沖的橫向空間相干性幾乎沒(méi)有發(fā)生改變。本文主要有兩個(gè)創(chuàng)新點(diǎn),其中一個(gè)是將光學(xué)圖像編入探測(cè)場(chǎng)光脈沖之中并借助慢光四波混頻效應(yīng)實(shí)現(xiàn)了慢光圖像信息在不經(jīng)存儲(chǔ)等操作下的直接轉(zhuǎn)換與全光學(xué)操控。另外一個(gè)則是利用兩束探測(cè)場(chǎng)光脈沖在低溫晶體中的存儲(chǔ)與釋放,驗(yàn)證了雙光脈沖的橫向空間相干性在固體介質(zhì)慢光存儲(chǔ)過(guò)程中可以被保持下來(lái)。此外,本文在第一章中對(duì)量子信息及其相關(guān)領(lǐng)域的發(fā)展史做了整體的回顧,并在第二章中對(duì)實(shí)驗(yàn)所涉及的基本理論進(jìn)行了具體的闡述,同時(shí)還對(duì)相關(guān)的主要儀器進(jìn)行了詳細(xì)的介紹。本文在最后一章中對(duì)全文的內(nèi)容進(jìn)行了回顧與總結(jié)并對(duì)下一步的研究計(jì)劃以及該研究領(lǐng)域的前景進(jìn)行了展望。
[Abstract]:With the development of human civilization in the early twenty-first Century, the traditional information technology has not been able to meet the growing needs of people. Along with the emergence of quantum effects, people gradually realize that the development of the field of quantum information will affect the progress of human civilization. And the development of the field of quantum information always cannot do without quantum manipulation technology, at the same time quantum storage also promotes the deepening understanding of the field of quantum information. Quantum information network construction is the premise of human into the quantum information era, effective control and storage and how to realize the photon is the foundation of quantum information network. Because of many excellent characteristics of solid medium itself, making it more conducive to the control of light and light at the same time, storage experiment, solid medium than gas medium is more suitable for the construction of quantum information network. Considering various factors, we select in solid medium In the research work has been carried out on optical manipulation and optical storage. The main contents of this paper are as follows: 1. under low temperature Pr:YSO crystal is realized in the direct transfer of control and full optical image information of slow light based on four wave mixing. In this part, we use a three slit light bar the optical image information into the detection field of optical pulse, and through modulation detection field and control field pulse parameters, making them happen electromagnetic induction Pr:YSO crystal at low temperature in the light transparent effect. In the influence of electromagnetically induced transparency effect, carrying the probe field optical image information of the optical pulse is slowed in the crystal in the field of optical pulse detection with optical image information at the same time we obtained by CCD sensor. When the pulse is slow slow light light field state detection, we give the electromagnetic induction in the crystal Light transparent system adds a control pulse, and by changing the parameters of pulse field light pulses that control the probe field in the state of slow light pulse through four wave mixing effect in the crystal and generate a new information channel. We on this new information channel. Optical pulse information collection and information, compared with the original information in the channel of optical pulse, found the optical image information two information channels are basically the same. The experimental results show that in Pr:YSO crystal slow light image information can not experience storage operation directly in the information channel between the transfer. After we change to control the intensity of optical pulses added, with additional control field to increase the intensity of light pulses, the intensity of the image of new information in the channel also increased simultaneously and the original image information in the channel This indicates that you can reduce the degree of synchronization, by changing the external control field of optical pulse intensity on the slow light in the image information transfer between adiabatic channel of optical manipulation. Finally we analyze the similarity between the images of the two information channel, proved slow light image information can be always maintained a high similarity to.2. show the transverse spatial coherence of double light pulses in the solid medium slow light storage process can be maintained in the process of adiabatic transfer and full optical manipulation, and storage time will never change the situation to maintain lateral spatial coherence. In this part, we can change the control field pulse and two probe pulse parameters of optical pulse the first Pr:YSO crystal at low temperature in the realization of the two detection slow light effect field of optical pulses, and the two probe optical pulse in the crystal after injection of C The occurrence of interference on the CD sensor. Through the interference pattern and the interference pattern intensity distribution curve that we experience slow light effect of double light pulse interference pattern and the young's interference model is basically the same. After we make the control pulse adiabatic shutdown and in a short time after opening, so as to realize the two probe optical pulse storage and release in the low temperature in the crystal. By changing the control pulse off time, the interference patterns we obtained under different storage time between the release of the two pulse, the interference pattern for data processing and analysis, we further obtain the intensity distribution curve of the interference pattern in the horizontal direction and the interference visibility (The Interference Visibility). The interference pattern of double light pulses before and after storage and different storage time, intensity distribution curve and the interference visibility in contrast, We have always found a high degree of consistency between them, indicating that the stored procedure does not change the space between the two optical pulse interference model. We demonstrated in Pr:YSO crystal, the slow light storage process of electromagnetically induced transparency can keep the double pulse based on transverse spatial coherence, while storage time will never change the double light pulse transverse space maintaining coherence. Finally, throughout the duration of the storage effect, the changes we studied two release pulse interference pattern interference visibility with the storage time, found almost no interference visibility with storage time changes and remain at a higher value. This indicates that always has interference good condition between the two release pulse in the whole storage period, the interference pattern with a high accuracy is shown throughout the storage process The transverse spatial coherence of double light pulses is almost not changed. This paper has two main innovations, one of which is the optical image into the probe field optical pulse and realizing the slow light image without direct conversion and storage and other operations under the full optical manipulation. By four wave mixing in slow light one is a probe optical pulse storage and release in the low temperature in the crystal by using two beams, verified the transverse spatial coherence of double light pulses in solid medium slow light storage process can be maintained. In addition, in the first chapter, the development history of quantum information and related fields to do the overall review the basic theory and in the second chapter of the experiment involved in detail, and has carried on the detailed introduction to the main instrument. In this paper, the content of the text in the last chapter reviews The future of the research project and the future of the research field are summarized and summarized.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:O437
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;微微秒光脈沖在電測(cè)量上的應(yīng)用[J];激光與光電子學(xué)進(jìn)展;1975年04期
2 林金谷 ,劉承惠;最短的光脈沖[J];物理;1982年08期
3 譚志飛;微微秒光脈沖的測(cè)量[J];電子器件;1984年03期
4 羅山;;已獲得8毫微微秒的光脈沖[J];激光與光電子學(xué)進(jìn)展;1985年10期
5 顧敏,譚維翰;相干光脈沖的合并和面積演化[J];光學(xué)學(xué)報(bào);1985年05期
6 孫文山;世界最短的激光脈沖[J];光學(xué)技術(shù);1985年04期
7 趙華正;;微微秒光脈沖的測(cè)量和應(yīng)用——微微秒光譜學(xué)[J];安徽大學(xué)學(xué)報(bào)(自然科學(xué)版);1985年03期
8 陸錫南;;貝爾實(shí)驗(yàn)室30毫微微秒光脈沖的研究[J];激光與光電子學(xué)進(jìn)展;1984年01期
9 張榮康;;微微秒光脈沖的測(cè)量[J];激光與光電子學(xué)進(jìn)展;1980年09期
10 佐佐木孝友他;一平;;用脈沖激勵(lì)激光產(chǎn)生微微秒光脈沖[J];激光與紅外;1974年11期
相關(guān)會(huì)議論文 前10條
1 翟召輝;張國(guó)權(quán);涂燕飛;竇宜領(lǐng);許京軍;;基于電磁感應(yīng)透明的角度復(fù)用光脈沖存儲(chǔ)與可選址光緩存[A];第十四屆全國(guó)量子光學(xué)學(xué)術(shù)報(bào)告會(huì)報(bào)告摘要集[C];2010年
2 宋振明;柴路;王清月;張志剛;;光脈沖在非線性介質(zhì)中傳輸?shù)臅r(shí)空二重性[A];中國(guó)光學(xué)學(xué)會(huì)2006年學(xué)術(shù)大會(huì)論文摘要集[C];2006年
3 郭淑琴;王亢;安文生;;超高斯光脈沖在密集色散管理光纖鏈中的傳輸特性研究[A];全國(guó)第十二次光纖通信暨第十三屆集成光學(xué)學(xué)術(shù)會(huì)議論文集[C];2005年
4 陳明飛;楊遠(yuǎn)洪;楊巍;楊明偉;;基于薩格奈克干涉環(huán)的光脈沖產(chǎn)生方法[A];第九屆全國(guó)光電技術(shù)學(xué)術(shù)交流會(huì)論文集(下冊(cè))[C];2010年
5 粟敬欽;景峰;王文義;;皮秒激光脈沖在釹玻璃放大介質(zhì)中的傳輸放大模型[A];中國(guó)工程物理研究院科技年報(bào)(2002)[C];2002年
6 元秀華;楊振宇;曾延安;趙茗;;40Gbit/s速率光脈沖經(jīng)湍流大氣傳輸后的演化研究[A];第十屆全國(guó)光電技術(shù)學(xué)術(shù)交流會(huì)論文集[C];2012年
7 巨振樂(lè);付君眉;馮恩信;;用顯式光束傳播法(EBPM)計(jì)算光脈沖在非色散波導(dǎo)內(nèi)的傳輸[A];1997年全國(guó)微波會(huì)議論文集(下冊(cè))[C];1997年
8 姜其暢;劉晉紅;劉超;張俊香;;基于四波混頻的多個(gè)慢光脈沖的產(chǎn)生和控制[A];第十六屆全國(guó)量子光學(xué)學(xué)術(shù)報(bào)告會(huì)報(bào)告摘要集[C];2014年
9 王建瑋;徐婧;吳健;;光通信中散射引起的光脈沖時(shí)域特性[A];第九屆全國(guó)光電技術(shù)學(xué)術(shù)交流會(huì)論文集(下冊(cè))[C];2010年
10 方建;;BESⅢ量能器光脈沖監(jiān)測(cè)系統(tǒng)實(shí)驗(yàn)研究[A];第十二屆全國(guó)核電子學(xué)與核探測(cè)技術(shù)學(xué)術(shù)年會(huì)論文集[C];2004年
相關(guān)重要報(bào)紙文章 前7條
1 記者 劉霞;德科學(xué)家讓光脈沖擁有“負(fù)質(zhì)量”[N];科技日?qǐng)?bào);2013年
2 本報(bào)記者 延宏;面對(duì)“超光速實(shí)驗(yàn)”……[N];科技日?qǐng)?bào);2000年
3 記者 吳仲?lài)?guó);NEC實(shí)驗(yàn)成功超光速光脈沖[N];科技日?qǐng)?bào);2000年
4 劉遼;回到過(guò)去是可能的嗎?[N];中華讀書(shū)報(bào);2006年
5 記者 王艷紅;執(zhí)著尋找外星人[N];新華每日電訊;2001年
6 毛黎;美證實(shí)信息傳遞速度不超過(guò)真空光速[N];科技日?qǐng)?bào);2003年
7 本報(bào)記者 周清春;讓光在“陷阱”里停留一秒[N];科技日?qǐng)?bào);2005年
相關(guān)博士學(xué)位論文 前9條
1 王瀟瀟;固體中光脈沖橫向信息相干操控的研究[D];吉林大學(xué);2016年
2 方曉惠;光碼分復(fù)用關(guān)鍵技術(shù)及可調(diào)諧光脈沖生成技術(shù)研究[D];天津大學(xué);2003年
3 楊榮草;光脈沖在非均勻光纖系統(tǒng)中的穩(wěn)定傳輸特性研究[D];山西大學(xué);2005年
4 田晉平;新型光孤子及其光脈沖在光纖通信系統(tǒng)中的傳輸控制特性研究[D];山西大學(xué);2006年
5 王娟芬;非均勻光纖和非均勻波導(dǎo)中光脈沖和光波的傳輸特性研究[D];山西大學(xué);2008年
6 陶青;基于SOI波導(dǎo)非線性效應(yīng)的光脈沖開(kāi)關(guān)設(shè)計(jì)及分析[D];華中科技大學(xué);2011年
7 王海華;摻鐠硅酸釔晶體中光脈沖信息的相干控制[D];吉林大學(xué);2008年
8 戴朝卿;非均勻光學(xué)傳輸系統(tǒng)中光脈沖操控的理論研究[D];蘇州大學(xué);2013年
9 吳正茂;光纖通信中的某些光傳輸問(wèn)題及光纖光柵外腔半導(dǎo)體激光器[D];四川大學(xué);2003年
相關(guān)碩士學(xué)位論文 前10條
1 趙國(guó)慶;微波光子中三角形光脈沖發(fā)生與應(yīng)用的研究[D];北京交通大學(xué);2016年
2 解憂;光纖通信中飛秒光脈沖間相互作用及其抑制[D];西安科技大學(xué);2004年
3 曾祥梅;單模光纖中光脈沖的壓縮及光脈沖對(duì)的分裂與聚合研究[D];陜西師范大學(xué);2004年
4 魏安海;光脈沖在大氣-海水混合信道中傳輸特性研究[D];中國(guó)科學(xué)院研究生院(西安光學(xué)精密機(jī)械研究所);2014年
5 周曉t,
本文編號(hào):1357126
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/1357126.html