微晶陶瓷磨料蝸桿砂輪的磨削性能評(píng)價(jià)研究
本文選題:微晶陶瓷砂輪 + 磨削性能; 參考:《山東大學(xué)》2017年碩士論文
【摘要】:齒輪磨削是齒輪精加工的最后一道工序,齒輪的加工質(zhì)量主要取決于砂輪磨削性能的好壞,然而目前對(duì)砂輪磨削性能的綜合評(píng)價(jià)較少。本文針對(duì)典型齒輪零件(材料為20CrMnTi的直齒齒輪工件)的磨削加工,對(duì)微晶陶瓷磨料蝸桿砂輪磨削性能進(jìn)行綜合評(píng)價(jià)。首先建立了砂輪磨削性能評(píng)價(jià)指標(biāo)體系,并確定采用灰色關(guān)聯(lián)分析法作為砂輪磨削性能的綜合評(píng)價(jià)方法;通過單因素實(shí)驗(yàn)驗(yàn)證了本研究提出的砂輪磨削性能評(píng)價(jià)指標(biāo)體系及綜合評(píng)價(jià)方法的合理性;最后應(yīng)用該評(píng)價(jià)方法對(duì)兩種不同來源的微晶陶瓷磨料蝸桿砂輪進(jìn)行了磨削性能對(duì)比評(píng)價(jià)。本文的研究成果為砂輪磨削性能綜合評(píng)價(jià)提供了一種新的思路,對(duì)企業(yè)磨削參數(shù)優(yōu)化具有實(shí)際指導(dǎo)意義。建立了針對(duì)齒輪零件的砂輪磨削性能評(píng)價(jià)體系并提出了評(píng)價(jià)方法。通過理論研究結(jié)合學(xué)校和企業(yè)實(shí)際實(shí)驗(yàn)條件,確定了以磨削力、砂輪表面形貌(最大出刃高度、均方根高度、偏態(tài)和峰度)、齒面粗糙度(平行于加工紋理方向和垂直于加工紋理方向)、齒輪金相燒傷、齒輪加工硬化、齒形齒向精度等級(jí)(齒廓偏差、螺旋線總偏差、螺旋線形狀偏差和螺旋線斜率偏差)以及殘余應(yīng)力作為砂輪磨削性能指標(biāo)的評(píng)價(jià)體系;并根據(jù)實(shí)驗(yàn)中的數(shù)據(jù)特點(diǎn)及評(píng)價(jià)目標(biāo),確定選擇灰色關(guān)聯(lián)法為砂輪磨削性能的評(píng)價(jià)方法。通過齒輪磨削實(shí)驗(yàn)驗(yàn)證了砂輪磨削性能評(píng)價(jià)方法的合理性。分別對(duì)磨齒進(jìn)給量及磨削深度進(jìn)行了單因素齒輪磨削實(shí)驗(yàn),齒輪磨削實(shí)驗(yàn)前后測(cè)量砂輪磨削性能評(píng)價(jià)指標(biāo)的各項(xiàng)具體參數(shù)值,再使用灰色關(guān)聯(lián)法對(duì)砂輪磨削性能進(jìn)行評(píng)價(jià),該評(píng)價(jià)結(jié)果與企業(yè)技術(shù)人員現(xiàn)有采用齒形精度、齒面粗糙度等簡(jiǎn)單指標(biāo)經(jīng)驗(yàn)判斷砂輪磨削性能優(yōu)劣的結(jié)論是相符合的,即表明本文所提出的砂輪磨削性能評(píng)價(jià)方法是可行的。針對(duì)項(xiàng)目要求及企業(yè)需求,將本研究提出的砂輪磨削評(píng)價(jià)方法應(yīng)用于企業(yè)對(duì)兩種不同來源的微晶陶瓷磨料蝸桿砂輪的磨削性能對(duì)比評(píng)價(jià)。由于不同的砂輪在加工同樣的工件時(shí)其砂輪磨削性能最優(yōu)時(shí)的加工參數(shù)不一定相同,為使不同的砂輪磨削性能對(duì)比更具有合理性,本文首先在YKS7225蝸桿砂輪磨齒機(jī)上,采用正交試驗(yàn)法,以灰色關(guān)聯(lián)度值(即砂輪磨削性能的量化)為優(yōu)化目標(biāo),優(yōu)化出上述兩種砂輪在其磨削性能最優(yōu)時(shí)的加工參數(shù),再使用優(yōu)化后加工參數(shù)下各自砂輪反映出來的砂輪磨削性能指標(biāo)參數(shù)進(jìn)行評(píng)價(jià)對(duì)比。評(píng)價(jià)結(jié)果表明,本企業(yè)所使用的兩種微晶陶瓷磨料蝸桿砂輪中,砂輪A的磨削性能略優(yōu)于砂輪B;同時(shí)通過該方法優(yōu)化參數(shù)后的砂輪磨削性能均比企業(yè)在原設(shè)計(jì)加工參數(shù)下的砂輪磨削性能得到了提高,可見本研究的評(píng)價(jià)方法對(duì)企業(yè)磨削齒輪加工砂輪選擇與工藝參數(shù)制定具有實(shí)際指導(dǎo)意義。
[Abstract]:Gear grinding is the last working procedure of gear finishing. The machining quality of gear mainly depends on the grinding performance of grinding wheel. However, the comprehensive evaluation of grinding performance of grinding wheel is few at present. In this paper, the grinding performance of microcrystalline ceramic abrasive worm wheel is comprehensively evaluated for the grinding of typical gear parts (straight gear workpiece with 20CrMnTi material). Firstly, the evaluation index system of grinding performance of grinding wheel is established, and the grey relational analysis method is adopted as the comprehensive evaluation method of grinding performance of grinding wheel. The rationality of the evaluation index system and comprehensive evaluation method of grinding performance of grinding wheel is verified by single factor experiment. Finally, the grinding performance of two kinds of microcrystalline ceramic abrasive worm wheel from different sources was evaluated by this method. The research results of this paper provide a new idea for the comprehensive evaluation of grinding performance of grinding wheel, and have practical guiding significance for the optimization of grinding parameters in enterprises. A grinding wheel grinding performance evaluation system for gear parts is established and the evaluation method is put forward. Through theoretical research and practical experimental conditions in schools and enterprises, grinding force, grinding wheel surface morphology (maximum edge height, root mean square height) were determined. Skewness and kurtosis), tooth surface roughness (parallel to and perpendicular to the texturing direction), metallographic burns of gears, hardening of gears, grade of tooth profile accuracy (tooth profile deviation, total helical deviation), Helix shape deviation and helical slope deviation) and residual stress as grinding wheel grinding performance evaluation system, and according to the experimental data characteristics and evaluation objectives, the gray correlation method is selected as the grinding wheel grinding performance evaluation method. The reasonableness of grinding performance evaluation method is verified by gear grinding experiment. The grinding performance of grinding wheel was measured before and after the grinding experiment, and then the grinding performance was evaluated by grey correlation method. The evaluation result is consistent with the conclusion that the grinding performance of grinding wheel is judged by using simple indexes such as tooth profile precision, tooth surface roughness and so on. That is to say, it is feasible to evaluate the grinding performance of grinding wheel proposed in this paper. According to the requirements of the project and the requirements of the enterprise, the grinding wheel grinding evaluation method proposed in this paper is applied to the comparative evaluation of grinding performance of two kinds of microcrystalline ceramic abrasive worm wheel from different sources. Because the grinding parameters of different grinding wheels are not always the same when machining the same workpiece, in order to make the contrast of grinding performance of different grinding wheel more reasonable, this paper first on the YKS7225 worm wheel grinding machine. The orthogonal test method is used to optimize the machining parameters of the two kinds of grinding wheels when their grinding performance is optimal, taking the grey correlation degree (i.e., the quantization of grinding performance) as the optimization objective. Then the grinding performance index parameters of grinding wheel reflected by each grinding wheel under optimized machining parameters were evaluated and compared. The evaluation results show that in the two kinds of microcrystalline ceramic abrasive worm wheel used in our enterprise, The grinding performance of grinding wheel A is slightly better than that of grinding wheel B, and the grinding performance of grinding wheel after optimizing parameters by this method is improved compared with the grinding wheel grinding performance of enterprise under the original design processing parameters. Therefore, the evaluation method of this study is of practical significance for the selection of grinding wheel and the formulation of technological parameters for enterprise grinding gear machining.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG743
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李宇鵬,霍文權(quán);圓柱蝸桿砂輪的計(jì)算機(jī)輔助參數(shù)化法設(shè)計(jì)[J];燕山大學(xué)學(xué)報(bào);2002年04期
2 沈永鶴;磨削蝸桿砂輪的修整[J];機(jī)械制造;2003年08期
3 ;修整蝸桿砂輪的金剛石滾輪[J];磨床與磨削;1974年06期
4 任金山;;小模數(shù)蝸桿砂輪的制型和修正[J];儀器制造;1980年06期
5 閆萍萍,馬德軍;單層電鍍超硬磨料蝸桿砂輪的工藝研究[J];新技術(shù)新工藝;2005年01期
6 高金忠;朱如鵬;李政民卿;;用于磨削面齒輪的蝸桿砂輪修整方法研究[J];機(jī)械制造與自動(dòng)化;2011年04期
7 于濤,范云霄,王素玉,楊俊茹;金剛石修磨輪修形環(huán)面蝸桿砂輪的理論分析及試驗(yàn)[J];現(xiàn)代制造工程;2002年08期
8 李兆高;;用蝸桿砂輪磨削修形齒輪[J];機(jī)械工藝師;1985年09期
9 沈平;劉光磊;;斜齒面齒輪蝸桿砂輪磨削的雙參數(shù)法[J];機(jī)械科學(xué)與技術(shù);2008年07期
10 孫洪勝;李宇鵬;張世珍;趙永昌;崔云起;王海艷;;磨削硬齒面大內(nèi)齒圈的橢球形蝸桿砂輪研究[J];制造技術(shù)與機(jī)床;2011年07期
相關(guān)重要報(bào)紙文章 前3條
1 鄭彥;秦川發(fā)展三新品通過專家鑒定[N];證券時(shí)報(bào);2007年
2 劉插旗;秦川數(shù)控蝸桿砂輪磨齒機(jī)獲獎(jiǎng)[N];中國(guó)工業(yè)報(bào);2003年
3 侯軍強(qiáng);秦川發(fā)展三個(gè)新品獲認(rèn)證[N];中國(guó)證券報(bào);2007年
相關(guān)博士學(xué)位論文 前1條
1 張魁榜;數(shù)控蝸桿砂輪磨齒機(jī)誤差建模與控制技術(shù)研究[D];合肥工業(yè)大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 田帥;展成法磨齒的蝸桿砂輪齒廓修形方法及試驗(yàn)[D];河南科技大學(xué);2015年
2 趙浩明;基于拓?fù)鋬?yōu)化的球形蝸桿砂輪磨齒機(jī)工作臺(tái)設(shè)計(jì)[D];燕山大學(xué);2016年
3 范軍輝;正交面齒輪磨前齒面余量控制及蝸桿砂輪磨齒原理研究[D];南京航空航天大學(xué);2016年
4 張汐;蝸桿砂輪磨齒機(jī)熱變形分析及建模[D];重慶大學(xué);2016年
5 周泓曲;改善齒輪表面紋理的蝸桿砂輪磨削方法研究[D];重慶大學(xué);2016年
6 趙君;擺線齒輪蝸桿砂輪磨削方法研究[D];重慶大學(xué);2016年
7 鄭龍偉;微晶陶瓷磨料蝸桿砂輪的磨削性能評(píng)價(jià)研究[D];山東大學(xué);2017年
8 高金忠;面齒輪滾磨刀具設(shè)計(jì)與修整方法研究[D];南京航空航天大學(xué);2011年
9 董相文;蝸桿砂輪磨齒機(jī)數(shù)控系統(tǒng)的研發(fā)[D];合肥工業(yè)大學(xué);2014年
10 車樂;球形蝸桿砂輪磨齒機(jī)的研究與設(shè)計(jì)[D];燕山大學(xué);2014年
,本文編號(hào):2108411
本文鏈接:http://sikaile.net/shoufeilunwen/boshibiyelunwen/2108411.html