蒽和咔唑的溶液結(jié)晶熱力學(xué)及結(jié)晶過程研究
本文選題:蒽 切入點(diǎn):咔唑 出處:《太原理工大學(xué)》2017年碩士論文
【摘要】:蒽和咔唑是來自煤焦油的高附加值工業(yè)原料。因其特殊的稠環(huán)芳香結(jié)構(gòu),廣泛應(yīng)用于染(顏)料,醫(yī)藥、農(nóng)藥和光電材料等領(lǐng)域。近年來,由于蒽和咔唑及其衍生物在功能高分子材料、有機(jī)發(fā)光二極管(OLED)及生物工程等領(lǐng)域的廣泛應(yīng)用,國內(nèi)外市場(chǎng)對(duì)高純度的蒽和咔唑的需求量逐年增加。溶液結(jié)晶法是目前國內(nèi)主要采用的蒽和咔唑分離方法,研究主要針對(duì)蒽和咔唑的分離過程,而對(duì)具體的結(jié)晶過程研究較少。本研究針對(duì)溶液結(jié)晶過程中溶劑對(duì)蒽和咔唑選擇性低和產(chǎn)品質(zhì)量差等問題,利用改進(jìn)的液固平衡裝置測(cè)定了蒽和咔唑在四種溶劑中的溶解度,并利用溶解度模型對(duì)數(shù)據(jù)進(jìn)行了關(guān)聯(lián),進(jìn)而探討溶劑和雜質(zhì)對(duì)蒽和咔唑結(jié)晶過程的影響。得到了粒度均勻,形貌完整的晶體,為蒽和咔唑工業(yè)化生產(chǎn)中溶劑的選擇和工藝條件的優(yōu)化提供了理論依據(jù)。主要結(jié)果如下:1、蒽與咔唑的溶解度測(cè)定及關(guān)聯(lián):利用改進(jìn)的液固平衡裝置分別測(cè)定了蒽和咔唑在N,N-二甲基甲酰胺(DMF)、二甲苯(Xylene)、四氯乙烯(TCE)、二乙二醇二甲醚(DGDE)四種溶劑中的溶解度數(shù)據(jù),蒽和咔唑的溶解度均隨著溫度升高而增大。并分別用修正的Apelblat方程、van't Hoff方程和lh模型對(duì)實(shí)驗(yàn)得到的溶解度進(jìn)行了關(guān)聯(lián),回歸得到了溶解度方程參數(shù)。lh模型對(duì)蒽和咔唑的關(guān)聯(lián)效果均優(yōu)于修正的Apelblat方程。同時(shí),通過van't Hoff得到了不同溶劑中的溶解焓、溶解熵和溶解吉布斯自由能等結(jié)晶熱力學(xué)數(shù)據(jù),蒽和咔唑在四種溶劑中的溶解過程均為非自發(fā)的吸熱過程。2、蒽與咔唑的超溶解度測(cè)定及介穩(wěn)區(qū)寬度:測(cè)定了蒽與咔唑在DMF、Xylene、TCE、DGDE四種溶劑中的超溶解度,與溶解度曲線比較,得到了蒽與咔唑在溶液結(jié)晶過程中的介穩(wěn)區(qū)數(shù)據(jù),并討論了溶劑、降溫方式和攪拌速率對(duì)介穩(wěn)區(qū)的影響。其中DMF中介穩(wěn)區(qū)的寬度較大,介穩(wěn)區(qū)隨著攪拌速率的增大而減小,隨著降溫速率的增大而增大。3、溶劑及其他因素對(duì)蒽與咔唑溶液結(jié)晶的影響:分別考察了溶劑種類、攪拌速率、降溫方式對(duì)蒽和咔唑溶液結(jié)晶的影響,采用X射線衍射儀(XRD)、綜合熱分析儀(DSC)、掃描電鏡(SEM)對(duì)產(chǎn)品的晶習(xí)和形貌進(jìn)行了表征。最佳的工藝條件為:外循環(huán)強(qiáng)制制冷、450 r/min,分別在N,N-二甲基甲酰胺(DMF)和二甲苯(Xylene)中得到了蒽和咔唑的完整晶體。4、蒽和咔唑的溶液共結(jié)晶:由于蒽和咔唑結(jié)構(gòu)和物化性質(zhì)的相似性,在分離精制的過程中互為雜質(zhì)且極易形成固體溶液。本研究對(duì)不同比例的蒽和咔唑進(jìn)行了共結(jié)晶,對(duì)得到的液體和固體分別利用氣相色譜儀(GC)和XRD、DSC,考察了溶液結(jié)晶過程中固體溶液的形成,并討論了蒽與咔唑溶液結(jié)晶中的相互影響。為工業(yè)上高純蒽和咔唑產(chǎn)品的獲得提供了基礎(chǔ)數(shù)據(jù)。
[Abstract]:Anthracene and carbazole are high value-added industrial raw materials from coal tar. Because of their special dense ring aromatic structure, they are widely used in dyeing materials, medicine, pesticides and optoelectronic materials. Anthracene, carbazole and its derivatives have been widely used in functional polymer materials, organic light-emitting diodes (OLED) and bioengineering. The demand for high purity anthracene and carbazole is increasing year by year in the domestic and foreign markets. Solution crystallization is the main separation method of anthracene and carbazole in China, and the separation process of anthracene and carbazole is studied. In this study, the solubility of anthracene and carbazole in four solvents was determined by an improved liquid-solid equilibrium device, aiming at the low selectivity of solvent to anthracene and carbazole and poor product quality. The solubility model was used to correlate the data, and the effects of solvent and impurity on the crystallization process of anthracene and carbazole were discussed. The main results are as follows: 1. The solubility of anthracene and carbazole are measured and correlated. The anthracene is determined by an improved liquid-solid equilibrium device. The solubility data of carbazole in four solvents, namely, N-dimethylformamide (DMFN), xylenein, tetrachloroethylene tetrachloride (TCEO) and diethylene glycol dimethyl ether (DGDED). The solubility of anthracene and carbazole increased with the increase of temperature, and the solubility of the experiment was correlated with the modified Apelblat equation and the lh model. The correlation effect of solubility equation parameter. Lh model on anthracene and carbazole is better than that of modified Apelblat equation. At the same time, the thermodynamic data of crystallization such as dissolution enthalpy, solubility entropy and Gibbs free energy in different solvents are obtained by van't Hoff. The dissolution process of anthracene and carbazole in four solvents were all non-spontaneous endothermic process. The supersolubility of anthracene and carbazole and the width of metastable zone were determined. The supersolubility of anthracene and carbazole in DMFX Xyleneum TCEE DGDE was determined and compared with the solubility curve. The metastable region data of anthracene and carbazole in the crystallization process of solution were obtained, and the effects of solvent, cooling mode and stirring rate on the metastable region were discussed. The width of the intermediate stable region of DMF was larger, and the metastable zone decreased with the increase of stirring rate. The effects of solvent and other factors on the crystallization of anthracene and carbazole solution were investigated. The effects of solvent type, stirring rate and cooling mode on the crystallization of anthracene and carbazole solution were investigated. The crystal habit and morphology of the product were characterized by X-ray diffractometer (XRDX), comprehensive thermal analyzer (DSCN) and scanning electron microscope (SEM). The optimum conditions were as follows: forced cooling in outer cycle, 450rm / min, at NN- dimethylformamide (DMF) and xylene (xylene), respectively. The complete crystal of anthracene and carbazole. 4, the solution of anthracene and carbazole were cocrystallized. Due to the similarity of structure and physicochemical properties of anthracene and carbazole, In the process of separation and purification of anthracene and carbazole in different proportions, anthracene and carbazole were cocrystallized. The formation of solid solution in the crystallization process of the solution was investigated by gas chromatograph (GC) and XRDX DSC. The interaction between anthracene and carbazole solution crystallization was discussed, which provided the basic data for obtaining high purity anthracene and carbazole products in industry.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TQ522.64
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 孫雪杉;董桂梅;楊仁杰;周長(zhǎng)宏;張偉玉;;蒽芘混合溶液二維相關(guān)熒光譜定量分析研究[J];光譜學(xué)與光譜分析;2016年S1期
2 張媛媛;趙靜;魯錫蘭;張德祥;;有機(jī)液體儲(chǔ)氫材料的研究進(jìn)展[J];化工進(jìn)展;2016年09期
3 程清;文慶珍;朱金華;李紅霞;;基于咔唑和噻吩的2種聚合物的電化學(xué)性能[J];高分子材料科學(xué)與工程;2016年03期
4 曹義風(fēng);楊啟煒;邢華斌;鮑宗必;蘇寶根;楊亦文;任其龍;;辣椒素在不同溶劑中的溶解度的測(cè)定與關(guān)聯(lián)(英文)[J];Chinese Journal of Chemical Engineering;2014年10期
5 姜偉奇;張春桃;劉幫禹;童仕唐;;蒽的溶解度測(cè)定與關(guān)聯(lián)[J];燃料與化工;2013年05期
6 程正載;王洋;龔凱;陳攀;代智超;姚娜;胡帥;王光華;李文兵;;粗蒽中主要組分的分離與精制[J];煤炭轉(zhuǎn)化;2013年03期
7 張曉鵬;李曉月;郭瑞麗;;蒽、菲、咔唑混合物乳化液膜分離技術(shù)的研究[J];石河子大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年02期
8 蔣淑戀;黃立章;胡世榮;;蒽醌衍生物在痕量汞固體基質(zhì)室溫q泄忖鴟ú舛ㄖ械撓τ肹J];分析測(cè)試學(xué)報(bào);2011年04期
9 張飛飛;周成合;顏建平;;咔唑類化合物研究新進(jìn)展[J];有機(jī)化學(xué);2010年06期
10 王修涌;薛永強(qiáng);;粗蒽中蒽、菲、咔唑的分離與精制技術(shù)進(jìn)展[J];山西化工;2007年06期
相關(guān)博士學(xué)位論文 前1條
1 張春桃;頭孢曲松鈉溶析結(jié)晶過程研究[D];天津大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 陸海東;乙基香蘭素結(jié)晶過程研究[D];北京化工大學(xué);2015年
2 袁建棟;吲哚[3,2-b]咔唑化合物的合成及其應(yīng)用[D];山西大學(xué);2015年
3 毋亭亭;溶劑結(jié)晶法粗蒽精制蒽和咔唑工藝改進(jìn)[D];太原理工大學(xué);2013年
4 陳康;咔唑超臨界抽提及蒽油綠色加工工藝研究[D];武漢科技大學(xué);2013年
5 李靈均;己內(nèi)酰胺溶解度的測(cè)定以及雜質(zhì)對(duì)其結(jié)晶過程的影響研究[D];天津大學(xué);2012年
6 鄭環(huán);溶劑結(jié)晶法研究蒽渣精制高純咔唑[D];太原理工大學(xué);2012年
7 孔文靜;咔唑加脫氫性能研究[D];浙江大學(xué);2012年
8 萬群義;蒽醌摻雜聚吡咯在電極材料中的應(yīng)用[D];華南理工大學(xué);2011年
9 劉吉?jiǎng)?AE-活性酯固液相平衡模型及結(jié)晶過程研究[D];北京化工大學(xué);2011年
10 劉琳;蒽類電致發(fā)光液晶材料的合成與表征[D];北京化工大學(xué);2009年
,本文編號(hào):1684701
本文鏈接:http://sikaile.net/shoufeilunwen/boshibiyelunwen/1684701.html