考慮參數(shù)不確定性的結(jié)構(gòu)系統(tǒng)振動研究
[Abstract]:In this paper, the statistical characteristics of vibration of structural systems with uncertain factors are studied and analyzed, based on the properties of orthogonal polynomial function system and the method of dimensionality reduction of multivariable functions. It is used to solve the randomness problems encountered in practical engineering and science, and the probabilistic and statistical characteristics of the random responses are compared with the results obtained by direct Monte Carlo simulation. Firstly, the basic concepts and properties of Hermite and Legendre orthogonal polynomials are introduced, which are favorable tools for approximation of response functions. Based on the dimensionality decomposition algorithm of arbitrary continuous differentiable multivariate functions, the Fourier-Hermite polynomial is used to expand the random response of the structural system under the condition that all the uncertain factors of the system are based on the corresponding and independent Gauss distribution. By reducing the dimension of the generalized model and using the method of multiple Gauss-Hermite numerical integration, each expansion coefficient is determined to obtain the approximation form of explicit orthogonal polynomial function which requires random response. The probabilistic and statistical characteristics of the method are analyzed by embedding local Monte Carlo simulation method. Finally, the error of the first four origin moments of the direct Monte Carlo simulation method is obtained by error formula, which is compared in a more intuitive way. Secondly, natural frequency is a key parameter in system design, structural analysis and stability, sensitivity analysis, as a structural dynamic characteristic parameter in actual structural dynamic system, and it has stochastic characteristics when considering the uncertainty of the system. For a spring mass system with three degrees of freedom and neglecting damping, the numerical simulation of its natural frequencies is carried out. The results show that the statistical results of the natural frequencies of the "black box" structure method are better than the implicit function expression method. With the increase of variable number of uncertain parameters, the statistical characteristics of natural frequencies of each order will be more consistent with the results of direct Monte Carlo simulation, but the computational cost will also increase with polynomial. Therefore, it is necessary to select the appropriate number of random variables according to the error analysis in order to reduce the calculation workload while satisfying the accuracy of the solution. Finally, parameterized modeling of plate-shell structural elements which are widely used in practical engineering structures is carried out. Under the boundary conditions of free on both sides and supported by spring on the left and right, the vibration response of the origin is caused by a simple harmonic force at a single point. Based on the above analysis method, the steady-state vibration displacement response in z direction at the excitation point is analyzed, and the probability and statistical characteristics of the random displacement response of the system are obtained. The mesh of plate structure is refined step by mesh element refinement criterion, and the influence of random boundary conditions of variable elastic braces on the response of random displacement is analyzed. The simulation results show that the proposed method can obtain the analytical results consistent with the direct Monte Carlo simulation and obtain the statistical characteristics of the vibration response of the stochastic plate structures. The finite element method based on the discrete stiffness boundary is used to refine the meshes. The statistical characteristics of the vibration response of stochastic plate structures with continuous stiffness boundary tend to a certain distribution.
【學(xué)位授予單位】:東北電力大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:O327
【相似文獻】
相關(guān)期刊論文 前10條
1 冷伍明,,趙善銳;土工參數(shù)不確定性的計算分析[J];巖土工程學(xué)報;1995年02期
2 李智,韓崇昭;一類含參數(shù)不確定性混沌系統(tǒng)的自適應(yīng)控制[J];物理學(xué)報;2001年05期
3 程加斌,張炎華;參數(shù)不確定性系統(tǒng)魯棒狀態(tài)估計的新方法[J];上海交通大學(xué)學(xué)報;1997年04期
4 陳昌軍;鄭雄偉;張衛(wèi)飛;;三種水文模型不確定性分析方法比較[J];水文;2012年02期
5 戎保;芮筱亭;王國平;尹志嘉;;參數(shù)不確定性細(xì)長火箭彈隨機特征值問題研究[J];工程力學(xué);2012年07期
6 樊仲光;梁家榮;肖劍;;參數(shù)不確定性廣義周期時變系統(tǒng)的魯棒H_∞控制[J];數(shù)學(xué)的實踐與認(rèn)識;2013年05期
7 陳元芳;隨機模擬中模型與參數(shù)不確定性影響的分析[J];河海大學(xué)學(xué)報(自然科學(xué)版);2000年01期
8 李小勇,羅交晚;帶馬爾可夫跳躍參數(shù)的離散隨機雙線性系統(tǒng)的穩(wěn)定性[J];長沙鐵道學(xué)院學(xué)報;2003年04期
9 陳昌軍;鄭雄偉;;水文模型參數(shù)不確定性分析方法探討[J];水利規(guī)劃與設(shè)計;2012年03期
10 李慧;;基于保成本設(shè)計的參數(shù)不確定性表示的優(yōu)化[J];計算機仿真;2008年06期
相關(guān)會議論文 前5條
1 袁旭;朱圣英;喬棟;崔平遠(yuǎn);;小天體著陸參數(shù)不確定性的敏感性分析[A];中國宇航學(xué)會深空探測技術(shù)專業(yè)委員會第十屆學(xué)術(shù)年會論文集[C];2013年
2 張保強;郭勤濤;;基于調(diào)整參數(shù)和最大熵方法的模型和參數(shù)不確定性量化[A];中國力學(xué)大會——2013論文摘要集[C];2013年
3 徐宗學(xué);李占玲;;黑河源區(qū)徑流模擬與模型不確定性分析[A];變化環(huán)境下的水資源響應(yīng)與可持續(xù)利用——中國水利學(xué)會水資源專業(yè)委員會2009學(xué)術(shù)年會論文集[C];2009年
4 王倩穎;吳斌;歐進萍;;考慮參數(shù)不確定性的結(jié)構(gòu)振動滑動模態(tài)控制[A];第八屆全國振動理論及應(yīng)用學(xué)術(shù)會議論文集摘要[C];2003年
5 馬釗;王躍萍;;參數(shù)不確定導(dǎo)彈高度控制系統(tǒng)的非線性設(shè)計[A];全面建成小康社會與中國航空發(fā)展——2013首屆中國航空科學(xué)技術(shù)大會論文集[C];2013年
相關(guān)博士學(xué)位論文 前3條
1 原明亭;多項式參數(shù)依賴系統(tǒng)魯棒控制有關(guān)問題研究[D];山東大學(xué);2013年
2 賀亮;基于參數(shù)依賴Lyapunov函數(shù)的多目標(biāo)優(yōu)化理論及應(yīng)用[D];哈爾濱工業(yè)大學(xué);2007年
3 黃瑋;混沌系統(tǒng)的同步和非混沌系統(tǒng)的混沌化研究[D];東北大學(xué);2005年
相關(guān)碩士學(xué)位論文 前10條
1 趙浩然;帶有未知參數(shù)的一類復(fù)雜網(wǎng)絡(luò)的同步分析[D];江蘇大學(xué);2016年
2 李亞軒;考慮參數(shù)不確定性的結(jié)構(gòu)系統(tǒng)振動研究[D];東北電力大學(xué);2017年
3 朱華;不確定參數(shù)下混沌系統(tǒng)的控制與同步[D];浙江工業(yè)大學(xué);2004年
4 姜曉明;參數(shù)不確定性系統(tǒng)的魯棒設(shè)計[D];哈爾濱工業(yè)大學(xué);2010年
5 周賓;基于參數(shù)依賴Lyapunov函數(shù)的不確定動態(tài)系統(tǒng)的綜合及其工程應(yīng)用[D];大慶石油學(xué)院;2007年
6 李楠;PID控制參數(shù)現(xiàn)代設(shè)計技術(shù)的研究與應(yīng)用[D];浙江工業(yè)大學(xué);2009年
7 秦帆;核電樓層譜參數(shù)不確定性及敏感性分析[D];大連理工大學(xué);2014年
8 李納;多項式參數(shù)依賴系統(tǒng)魯棒穩(wěn)定性分析與魯棒鎮(zhèn)定研究[D];青島大學(xué);2008年
9 王攀;含參數(shù)不確定時滯非線性Hamilton系統(tǒng)H_∞控制設(shè)計[D];曲阜師范大學(xué);2013年
10 潘昌忠;考慮參數(shù)不確定性和外界擾動的Acrobot魯棒控制設(shè)計[D];中南大學(xué);2009年
本文編號:2400219
本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/2400219.html