Kahler曲面中的β-辛臨界曲面
發(fā)布時(shí)間:2018-11-25 18:36
【摘要】:給定嵌入到Kahler曲面M中閉二維辛曲面Σ,定義α為Σ在M中所成的Kahler角。本文主要討論這種辛曲面類中的泛函Lβ =∫∑(1/cosβα)dμΣ,β≥0,以及使得該泛函取得極值的辛臨界曲面。我們首先推導(dǎo)出它所對應(yīng)的Euler-Lagrange方程,再通過一些分析計(jì)算得到β-辛臨界曲面的一些性質(zhì)。
[Abstract]:Given a closed 2-D symplectic surface 危 embedded in Kahler surface M, a is defined as the Kahler angle of 危 in M. In this paper, we mainly discuss the symplectic critical surface of the class of symplectic surface L 尾 = 鈭,
本文編號:2357055
[Abstract]:Given a closed 2-D symplectic surface 危 embedded in Kahler surface M, a is defined as the Kahler angle of 危 in M. In this paper, we mainly discuss the symplectic critical surface of the class of symplectic surface L 尾 = 鈭,
本文編號:2357055
本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/2357055.html
最近更新
教材專著