電—聲相互作用對(duì)聚合物鏈中載流子瞬態(tài)輸運(yùn)性質(zhì)的影響
[Abstract]:The problem of electrical transport in open quantum systems, which is closely related to quantum dissipation, has always been the focus of attention of researchers. In an open quantum system, if organic materials are used in the intermediate transport layer, the electro-acoustic interaction plays an important role in the carrier transport properties in the system. In order to obtain the real time transport properties of organic polymer devices and to fully consider the strong electro acoustic coupling in organic materials, the method of combining hierarchical equations of motion (HEOM) based on Green's function with non adiabatic molecular dynamics is used in this paper. The excitation kinetics and carrier transient transport in conjugated polymer systems are discussed in detail. For the electronic part of the intermediate system Hamiltonian is described by a tight-binding Su-Schrieffer-Heeger (SSH) model and the source electrode and leakage electrode are described by a fermionic library without interaction. By using the HEOM method based on Green's function, the differential equations describing the electronic part and the first order adjoint density matrix of the system can be obtained, and the lattice part is treated by classical method, which satisfies the Newtonian equation of motion. The Runge-Kutta method is used to simulate the whole system evolution. We first use HEOM method to study the transport properties of carriers in open quantum systems with different intensities of electro-acoustic coupling. The results show that the electro acoustic interaction hinders the carrier transport when the bias voltage is small, but with the increase of the bias voltage, the electro acoustic coupling accelerates the carrier transport. This is due to the increase of the bias voltage, the carriers in the electrode can be injected into the system, and the lattice distortion is induced by the electro-acoustic coupling, which leads to the formation of the exciton state, and the emergence of the exciton state promotes the carrier transport. The larger the electric-acoustic interaction is, the stronger the lattice relaxation ability is, and the more the energy level shifts to the center of the band gap, the more the states in the bias window are and the larger the current is. In addition, we also study the effect of the size effect of the intermediate system. It is found that with the increase of the length of the intermediate system, the energy level distribution becomes denser, and at the same bias voltage, it is easier to form a new exciton state than the small size system. The appearance of the new exciton state will promote the increase of the current again. In addition, when the coupling between the system and the electrode is weakened, the stronger the electro-acoustic interaction is, the more obvious the current platform appears in the VI- curve. This is because when the coupling between the system and the electrode decreases, the energy level in the system becomes smaller, and the larger the electro-acoustic coupling is, the stronger the lattice relaxation ability is, and the more obvious the ladder platform is. We also simulate the dynamic transport behavior of the system under Sweep bias. It is found that when the bias voltage is added in the form of increasing voltage and then decreasing when the bias voltage is increased to the maximum value, the hysteresis of the current will occur in the volt-ampere characteristic curve of the system. This is due to the existence of strong electro-acoustic interaction in organic polymers, in which moving electrons and holes will induce lattice distortion, and distorted lattices will produce a localized potential field in which electrons and holes will be bound to form exciton states. Due to the existence of this "self-trapping" effect, the exciton state of the system will be formed when the bias voltage increases gradually, and the exciton state of the system will annihilate when the bias voltage increases to the maximum value and then decreases gradually. Moreover, the polarization voltage of exciton state is different from that of exciton state annihilation, which leads to hysteresis effect of current. It is found that the hysteresis effect of the current will occur many times in a certain range of bias voltage when the size of the intermediate system increases. The stronger the electro-acoustic coupling intensity, the larger the band gap, the more obvious the hysteresis effect is, and the stronger the coupling between the system and the electrode is, the wider the energy level is, and the weaker the current hysteresis effect is.
【學(xué)位授予單位】:河北師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O469
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 叢爽,鄭毅松,姬北辰,戴誼;量子系統(tǒng)控制發(fā)展綜述[J];量子電子學(xué)報(bào);2003年01期
2 李宗誠(chéng);;邊界交流關(guān)系、量子系統(tǒng)消耗與量子組織均衡——量子開(kāi)放系統(tǒng)邊界交流均衡分析力學(xué)基礎(chǔ)(Ⅱ)[J];原子與分子物理學(xué)報(bào);2008年04期
3 叢爽;朱亞萍;劉建秀;;不同目標(biāo)函數(shù)的量子系統(tǒng)動(dòng)態(tài)跟蹤[J];系統(tǒng)科學(xué)與數(shù)學(xué);2012年06期
4 劉延生,,汪佩瓊;量子系統(tǒng)絕熱演化的非動(dòng)力學(xué)相位[J];武漢水利電力大學(xué)學(xué)報(bào);1995年05期
5 常功;;量子系統(tǒng)中非指數(shù)形式衰變的首次發(fā)現(xiàn)[J];科學(xué);1998年01期
6 黃澤霞;黃德才;俞攸紅;;開(kāi)放量子系統(tǒng)狀態(tài)最優(yōu)跟蹤控制的研究[J];計(jì)算機(jī)科學(xué);2013年12期
7 叢爽;匡森;;量子系統(tǒng)中狀態(tài)估計(jì)方法的綜述[J];控制與決策;2008年02期
8 梅迪;李崇;楊國(guó)輝;宋鶴山;;高維量子系統(tǒng)中編碼和解碼方案(英文)[J];大連理工大學(xué)學(xué)報(bào);2009年02期
9 楊潔;叢爽;;單個(gè)控制場(chǎng)下開(kāi)放量子系統(tǒng)的狀態(tài)轉(zhuǎn)移(英文)[J];中國(guó)科學(xué)院研究生院學(xué)報(bào);2012年01期
10 王銀珠;侯晉川;;無(wú)限維兩體量子系統(tǒng)可分態(tài)的一個(gè)必要充分條件[J];中北大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年01期
相關(guān)會(huì)議論文 前10條
1 楊名;鄭小虎;楊青;董萍;方曙東;王長(zhǎng)春;曹卓良;;高維量子系統(tǒng)糾纏濃縮[A];第十五屆全國(guó)原子與分子物理學(xué)術(shù)會(huì)議論文摘要集[C];2009年
2 劉曉艷;劉學(xué)深;周忠源;丁培柱;;量子系統(tǒng)顯式辛格式的優(yōu)化[A];Structure Preserving Algorithm and Its Applications--Proceedings of CCAST (World Laboratory) Workshop[C];1999年
3 叢爽;;量子系統(tǒng)控制做什么?[A];系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)論文集(第15卷)[C];2014年
4 產(chǎn)林平;叢爽;;開(kāi)放量子系統(tǒng)量子態(tài)相干保持的控制策略[A];'2010系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2010年
5 叢爽;楊霏;;開(kāi)放量子系統(tǒng)收斂的狀態(tài)控制策略[A];中國(guó)自動(dòng)化學(xué)會(huì)控制理論專業(yè)委員會(huì)B卷[C];2011年
6 叢爽;;量子系統(tǒng)的相干控制策略及其實(shí)現(xiàn)[A];'2010系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2010年
7 叢爽;鄭捷;;兩能級(jí)量子系統(tǒng)控制場(chǎng)的設(shè)計(jì)與操縱[A];'2006系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)交流會(huì)論文集[C];2006年
8 周薇薇;張明;謝紅衛(wèi);;量子系統(tǒng)的多時(shí)間點(diǎn)測(cè)量[A];'2006系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)交流會(huì)論文集[C];2006年
9 劉學(xué)深;丁培柱;;量子系統(tǒng)的辛算法及其在激光原子物理中的應(yīng)用[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2005論文摘要集(下)[C];2005年
10 李兆凱;Man-HongYung;陳宏偉;魯大為;James D.Whitfield;彭新華;Ala'n Aspuru-Guzik;杜江峰;;利用核磁共振量子計(jì)算解決量子系統(tǒng)基態(tài)問(wèn)題[A];第十七屆全國(guó)波譜學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];2012年
相關(guān)重要報(bào)紙文章 前1條
1 記者 吳長(zhǎng)鋒;捉住“量子小妖”實(shí)現(xiàn)量子算法冷卻[N];科技日?qǐng)?bào);2014年
相關(guān)博士學(xué)位論文 前10條
1 崔曉東;GARRISON-WRIGHT相位族的理論與應(yīng)用研究[D];山東大學(xué);2015年
2 周薇薇;基于幾何表示的典型量子系統(tǒng)辨識(shí)與控制[D];國(guó)防科學(xué)技術(shù)大學(xué);2013年
3 陳沖;周期性驅(qū)動(dòng)開(kāi)放量子系統(tǒng)的動(dòng)力學(xué)研究[D];蘭州大學(xué);2016年
4 程l
本文編號(hào):2325899
本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/2325899.html