基于Landsat8 OLI數(shù)據(jù)彰武地區(qū)旱情監(jiān)測模型研究
[Abstract]:The research scope of this study is Zhangwu County, Fuxin City, Liaoning Province. The Landsat 8 satellite OLI remote sensing images in June and April 2016 are preprocessed by ENVI software. At the same time, the measured data of soil moisture content in corresponding months in the study area were obtained. In this study, the temperature vegetation index method and vertical drought index method were selected as indicators of drought monitoring. The indexes were fitted with soil moisture content, and the significance was analyzed by SPSS software. Finally, a drought monitoring model suitable for Zhangwu area is obtained. The main contents and conclusions of this study are as follows: 1. The model based on temperature vegetation index is constructed and analyzed. The correlation and significance between temperature vegetation index and soil moisture content were compared and analyzed. The results showed that the fitting effect of temperature vegetation drought index and soil moisture content at different depths was poor, and the fitting effect with 30cm soil moisture content was relatively good. The multiple correlation coefficient was 0.3837; The significance of the two was analyzed by using SPSS software. The results showed that the soil moisture content with the depth of 10cm and 20cm was significantly correlated with TVDI at the level of 0. 05. Soil moisture content with depth of 30cm was significantly correlated with TVDI at 0.01 level. The model based on vertical drought index is constructed and analyzed. In the construction of drought monitoring model based on vertical drought index method, the fitting results of PDI inversion data and soil moisture content show that the soil moisture content fitting effect of depth 20cm is the best. The fitting effect of soil moisture content with the depth of 30cm was relatively poor when the complex correlation coefficient was 0. 5555 ~ 10 cm and the depth of 30cm was 10 cm. The results of significant analysis showed that soil moisture content with 1Ocm and 20cm depth was significantly correlated with vertical drought index at 0.01 level, and soil moisture content with depth 30cm was significantly correlated with vertical drought index at 0. 05 level. The two models were compared and the optimal model was chosen as the drought monitoring model in Zhangwu area. The correlation and significance of the two models showed that the fitting results of vertical drought index and soil moisture content were better than that of soil moisture content and TVDI. Therefore, the model based on vertical vegetation index method is more suitable for drought monitoring in Zhangwu area. 4. The model is validated and analyzed. Through the inversion of satellite image in April 2016, the inversion value of soil moisture content is obtained. Through the comparison and analysis of soil moisture content measured at different depths and the inversion soil moisture content, the results show that, The correlation of soil moisture with depth of 1Ocm and 20cm was higher than that of 30cm with depth of 0.1041 and 0.1064, respectively. Among them, the correlation coefficient of soil moisture content with depth of 30cm is the worst, the correlation coefficient is 0.4945, the complex correlation coefficient between soil moisture content and measured soil moisture content is 0.5986 when the depth is 10cm, and the correlation coefficient is 0.4945 when the depth is 30cm. The complex correlation coefficient between the inversion of depth of 20cm and the measured soil moisture content is 0.6009. Through the analysis of accuracy and relative error, the inversion effect of 10cm ~ (20) cm is the most ideal. The average inversion accuracy of 10cm is 91.25 ~ (20) cm and the average of inversion accuracy is 88.53, which is 6.96% and 4.24% higher than the average value of 30cm inversion precision respectively. In the relative error analysis, the average relative error of 10 cm ~ (20) cm is lower than that of 30cm by 8.9% and 5.34 ~ (30) cm, respectively. The average relative error of 10 cm ~ (20) cm is 18.49. In conclusion, in drought monitoring, the effect of drought monitoring with depth less than 20cm is ideal when remote sensing and vertical drought index model are used to monitor drought.
【學(xué)位授予單位】:沈陽農(nóng)業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:S423
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李全友;盧勝勇;;河北省旱情監(jiān)測現(xiàn)狀及發(fā)展建議[J];河北水利;2007年08期
2 牛二偉;;長治市旱情監(jiān)測狀況及改進(jìn)對策[J];中國水利;2008年09期
3 許國鵬;李仁東;梁守真;葉明;;基于改進(jìn)型溫度植被干旱指數(shù)的旱情監(jiān)測研究[J];世界科技研究與發(fā)展;2006年06期
4 康貴春;梁鳳國;;遼寧省旱情監(jiān)測系統(tǒng)建設(shè)研究[J];水利水電技術(shù);2007年04期
5 高福棟;王兆剛;;北京市旱情監(jiān)測系統(tǒng) 統(tǒng)一管理和分級管理相結(jié)合[J];中國水利;2007年13期
6 章樹安;王愛平;楊桂蓮;楊建青;;旱情監(jiān)測與評價進(jìn)展研究與思考[J];水文;2010年03期
7 朱建國,楊桂霞,王秀山,王東寧;旱情監(jiān)測與業(yè)務(wù)化運行[J];中國農(nóng)業(yè)資源與區(qū)劃;1998年05期
8 高偉;林妍;潘新華;;基于多源遙感衛(wèi)星數(shù)據(jù)的桂西北旱情監(jiān)測研究[J];廣西水利水電;2014年01期
9 陳晨;劉媛媛;王文種;何川;;基于溫度植被干旱指數(shù)的三花間流域旱情監(jiān)測[J];東北水利水電;2008年02期
10 ;怎樣進(jìn)行旱情監(jiān)測與分析[J];吉林水利;1996年01期
相關(guān)會議論文 前10條
1 傅承琦;;旱情監(jiān)測系統(tǒng)如何更好地服務(wù)泉州抗旱工作[A];福建省第十一屆水利水電青年學(xué)術(shù)交流會論文集[C];2007年
2 康己新;;泉州市旱情監(jiān)測系統(tǒng)試點工程調(diào)研報告[A];福建省第十二屆水利水電青年學(xué)術(shù)交流會論文集[C];2008年
3 烏日娜;阿拉騰圖雅;何貴平;;烏海市重點地區(qū)建設(shè)旱情監(jiān)測與分析系統(tǒng)工程綜述[A];科技創(chuàng)新與經(jīng)濟結(jié)構(gòu)調(diào)整——第七屆內(nèi)蒙古自治區(qū)自然科學(xué)學(xué)術(shù)年會優(yōu)秀論文集[C];2012年
4 于洋;;遙感技術(shù)在黑龍江省春季抗旱工作中的應(yīng)用[A];全國旱情監(jiān)測技術(shù)與抗旱減災(zāi)措施論文集[C];2009年
5 陳智;;旱情監(jiān)測自動化技術(shù)[A];中國水利學(xué)會首屆青年科技論壇論文集[C];2003年
6 王鵬新;孫威;張樹譽;李星敏;;旱情監(jiān)測及其業(yè)務(wù)化運行的關(guān)鍵技術(shù)[A];中國數(shù)字農(nóng)業(yè)與農(nóng)村信息化學(xué)術(shù)研究研討會論文集[C];2005年
7 楊揚;張建云;陸桂華;吳炳方;周國良;戚建國;王琳;;全國旱情監(jiān)測預(yù)測系統(tǒng)簡介[A];中國水利學(xué)會2006學(xué)術(shù)年會暨2006年水文學(xué)術(shù)研討會論文集(水文水資源新技術(shù)應(yīng)用)[C];2006年
8 李榮f ;余雷;雷聲;;江西省農(nóng)業(yè)旱情監(jiān)測預(yù)測系統(tǒng)模型研究[A];全國旱情監(jiān)測技術(shù)與抗旱減災(zāi)措施論文集[C];2009年
9 牟伶俐;閆娜娜;吳炳方;;旱情遙感監(jiān)測方法與系統(tǒng)開發(fā)[A];中國數(shù)字農(nóng)業(yè)與農(nóng)村信息化學(xué)術(shù)研究研討會論文集[C];2005年
10 陸健強;王衛(wèi)星;楊志勇;林鉆輝;;基于茶園旱情監(jiān)測的無線傳感器網(wǎng)絡(luò)節(jié)點系統(tǒng)[A];紀(jì)念中國農(nóng)業(yè)工程學(xué)會成立30周年暨中國農(nóng)業(yè)工程學(xué)會2009年學(xué)術(shù)年會(CSAE 2009)論文集[C];2009年
相關(guān)重要報紙文章 前10條
1 記者 馮穎 通訊員 鄭剛;做好旱情監(jiān)測預(yù)測和人影工作[N];中國氣象報;2013年
2 秦延安 程文利;陜西首批20個旱情監(jiān)測點正式啟動[N];黃河報;2009年
3 記者 秦延安 通訊員 程文利;陜西 第一批旱情監(jiān)測點啟用[N];中國水利報;2009年
4 記者 劉國英 通訊員 秦延安 程文利;陜西首批20個站點啟動旱情監(jiān)測[N];陜西日報;2009年
5 龍小波;我市建成旱情監(jiān)測系統(tǒng)[N];商洛日報;2009年
6 記者 毛翠輝 通訊員 劉文奎;加強旱情監(jiān)測預(yù)報工作[N];中國氣象報;2011年
7 通訊員 林澤磊 李德平;青島市加強旱情監(jiān)測服務(wù)[N];中國氣象報;2010年
8 李哲強;河北:安一雙“旱情千里眼”[N];中國水利報;2002年
9 記者 馮金蓮;旱情應(yīng)急監(jiān)測 實施方案啟動[N];石家莊日報;2009年
10 記者 索穎;我市抗旱澆麥工作取得階段性勝利[N];新鄉(xiāng)日報;2009年
相關(guān)博士學(xué)位論文 前2條
1 陳曉燕;旱情監(jiān)測預(yù)測系統(tǒng)建設(shè)關(guān)鍵技術(shù)研究[D];河海大學(xué);2004年
2 牟伶俐;農(nóng)業(yè)旱情遙感監(jiān)測指標(biāo)的適應(yīng)性與不確定性分析[D];中國科學(xué)院研究生院(遙感應(yīng)用研究所);2006年
相關(guān)碩士學(xué)位論文 前6條
1 胡文;內(nèi)蒙古地區(qū)基于云參數(shù)背景場的MODIS旱情監(jiān)測模型研究與應(yīng)用[D];內(nèi)蒙古農(nóng)業(yè)大學(xué);2016年
2 吳淑靜;基于Landsat8 OLI數(shù)據(jù)彰武地區(qū)旱情監(jiān)測模型研究[D];沈陽農(nóng)業(yè)大學(xué);2017年
3 包欣;基于多源數(shù)據(jù)的旱情監(jiān)測方法研究[D];安徽理工大學(xué);2013年
4 習(xí)永強;旱情監(jiān)測信息管理系統(tǒng)研究[D];西北大學(xué);2012年
5 孫麗;構(gòu)建北京地區(qū)遙感旱情監(jiān)測系統(tǒng)的研究[D];中國農(nóng)業(yè)大學(xué);2004年
6 閆娜娜;基于遙感指數(shù)的旱情監(jiān)測方法研究[D];中國科學(xué)院研究生院(遙感應(yīng)用研究所);2005年
,本文編號:2323163
本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/2323163.html