不同誤差訂正方法在中國區(qū)域氣候模擬中的比較和應(yīng)用
[Abstract]:Climate models at the global and regional levels are the primary tools for modelling and predicting climate change. However, due to the complexity of the climate system and the level of scientific development, they are compared to contemporary climate modelling and observation. There are always more or less deviations, including average state and probability density distribution. If the climate model results are directly applied to driving the impact assessment models such as hydrology and agriculture, the deviation will have a great impact on the simulation, so it is necessary to carry out error correction work. In this study, the daily precipitation, daily mean temperature, daily maximum temperature and daily minimum temperature simulated by the RegCM4.4 regional climate model were revised by quantile mapping method driven by ERA-interm reanalysis data. In the study, the whole year is divided into four seasons: winter (December ~ February), spring (March ~ May), summer (June ~ August) and autumn (September ~ November). Firstly, the daily precipitation was revised, and the first half of the period from 1991 to 2010 (1991 ~ 2000) was used as the reference period. The transfer function was established, the later period (2001 ~ 2010) was revised and its effect was tested. By comparing the six different transfer function methods established by using parameter and non-parameter, it is found that the six methods can obviously reduce the error of precipitation simulation, and the relative performance of RQUANT is more prominent, that is, it is chosen as the main correction method. It is used to revise the simulated precipitation and temperature results of RegCM4. Applying the RQUANT method to the correction of daily precipitation, it is found that the deviation of the model can be greatly reduced after the error correction, and the relative error between precipitation and observation in most areas of China is concentrated within -25%. The spatial correlation coefficient can be greatly increased and the error standard deviation can be reduced, so that the precipitation is closer to the observed data in terms of distribution and numerical value, and the interannual variability of precipitation can also be improved to a certain extent. Because the effect of the model itself on temperature simulation is better than that of precipitation, the correction result of error correction is closer to that of observation, and the spatial correlation coefficient is more than 0.99. The average temperature simulated by RQUANT method is better than that of the model. The correction effect of daily maximum temperature and daily minimum temperature is very obvious, the deviation between the results of correction and observation in most areas of China is 鹵1 擄C, the spatial correlation coefficient is increased, and the error standard deviation is reduced. The effect on the correction of temperature interannual variability is not obvious, but the spatial correlation coefficient in spring is obviously increased, and the error standard deviation of interannual variability is reduced. The RQUANT method also has a good correction effect for extreme events. The simulation deviation of four extreme event indices (CDD (continuous drought days), SDII (heavy precipitation index (), TXx () and TNn (annual extreme minimum temperature) is reduced. The spatial correlation coefficient is increased and the error standard deviation is reduced. The revised results are more in line with the observed data.
【學(xué)位授予單位】:中國氣象科學(xué)研究院
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:P435
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 史國寧;;日本的世界氣候研究計劃之一——氣候模擬[J];氣象科技;1983年01期
2 苗峻峰,W.LawrenGates;氣候模擬[J];新疆氣象;1995年02期
3 顏宏,趙俊英;有限區(qū)氣候模擬側(cè)邊界嵌套誤差分析及邊界條件的研究[J];計算物理;1997年Z1期
4 ;氣侯模擬志愿者全球分布:歐美人數(shù)眾多[J];氣象科技進(jìn)展;2013年06期
5 溫市耕;區(qū)域氣候模擬[J];內(nèi)蒙古氣象;1996年01期
6 趙宗慈;“三維氣候模擬引論”介紹[J];氣象科學(xué)研究院院刊;1989年01期
7 歐陽首承,張建國,溫麗葉;生態(tài)平衡分析方法的探討——反射率氣候模擬嘗試[J];生態(tài)學(xué)雜志;1989年02期
8 劉永強,丁一匯;區(qū)域氣候模擬研究[J];應(yīng)用氣象學(xué)報;1995年02期
9 ;氣候模擬方法改進(jìn)了天氣預(yù)報[J];氣象科技;1999年03期
10 潘建峰;國慶喜;王化儒;;山地小氣候模型在帽兒山地區(qū)氣候模擬中的應(yīng)用[J];東北林業(yè)大學(xué)學(xué)報;2007年05期
相關(guān)會議論文 前8條
1 曾新民;劉金波;馬柱國;吳志皇;熊仕焱;;改進(jìn)陸面非均勻表示對區(qū)域氣候模擬的影響[A];第26屆中國氣象學(xué)會年會全球和區(qū)域氣候模式及極端天氣氣候事件的模擬研究分會場論文集[C];2009年
2 鄭益群;于革;;2萬年來東亞氣候環(huán)境變化的區(qū)域氣候模擬研究[A];中國氣象學(xué)會2006年年會“氣候系統(tǒng)模式發(fā)展與應(yīng)用”分會場論文集[C];2006年
3 鐘科;王漢杰;;區(qū)域氣候模擬研究中的物理集合技術(shù)[A];推進(jìn)氣象科技創(chuàng)新加快氣象事業(yè)發(fā)展——中國氣象學(xué)會2004年年會論文集(下冊)[C];2004年
4 張井貝;樂群;呂勁文;;RegCM3對中國東部區(qū)域氣候模擬的性能檢驗[A];第八屆長三角氣象科技發(fā)展論壇論文集[C];2011年
5 吳澗;蔣維楣;劉紅年;湯劍平;;在區(qū)域氣候模擬中引入大氣化學(xué)過程的初步研究[A];第五屆全國優(yōu)秀青年氣象科技工作者學(xué)術(shù)研討會學(xué)術(shù)論文集[C];2002年
6 張英娟;董文杰;;中國西北氣候模擬及未來干旱情景預(yù)估[A];中國氣象學(xué)會2007年年會氣候變化分會場論文集[C];2007年
7 趙珊珊;張永山;鄒旭愷;張強;;TAPM模式對三峽庫區(qū)涪陵段的氣候模擬[A];三峽庫區(qū)強降水誘發(fā)地質(zhì)災(zāi)害研究[C];2005年
8 胡軼佳;鐘中;張耀存;;RegCM3對1998年夏季東亞區(qū)域月尺度氣候模擬能力的檢驗[A];推進(jìn)氣象科技創(chuàng)新加快氣象事業(yè)發(fā)展——中國氣象學(xué)會2004年年會論文集(下冊)[C];2004年
相關(guān)重要報紙文章 前1條
1 本報記者 王秋蓉;破解全球海洋環(huán)境氣候模擬難題[N];中國海洋報;2008年
相關(guān)博士學(xué)位論文 前1條
1 張志富;一種用于氣候模擬的分段積分法及其在荒漠化擴展敏感性試驗中的應(yīng)用[D];蘭州大學(xué);2008年
相關(guān)碩士學(xué)位論文 前4條
1 童堯;不同誤差訂正方法在中國區(qū)域氣候模擬中的比較和應(yīng)用[D];中國氣象科學(xué)研究院;2017年
2 孫莉娟;土壤濕度年際異常對中國及歐亞春夏季氣候模擬的影響[D];南京信息工程大學(xué);2013年
3 朱濤;RegCM3.0與RegCM4.0對中國區(qū)域氣候模擬的對比分析[D];南京信息工程大學(xué);2012年
4 鄒學(xué)智;南方雙膜單棟塑料溫室小氣候模擬研究[D];南京信息工程大學(xué);2013年
,本文編號:2281425
本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/2281425.html