集合卡爾曼濾波(EnKF)岸基雷達(dá)資料同化對(duì)登陸臺(tái)風(fēng)數(shù)值模擬的影響研究
[Abstract]:In recent decades, the forecast error of typhoon track is decreasing year by year, but the progress of intensity and precipitation is very slow, which is partly due to the relatively insufficient ability of typhoon numerical model to predict its intensity and structure. Due to the strong nonlinearity of the typhoon system, the small deviation of the initial field is easy to double magnify in the integral process, which makes the forecast result deviate from the actual weather condition seriously. In the process of data assimilation, the model background field and observation data are fused based on certain mathematical theory, and the analytical field with small theoretical error is obtained, which can provide more accurate prediction initial conditions for the numerical model. To a certain extent, the ability of model prediction is improved. Shore based radar can detect the fine structure of landing typhoon core. It is very important to make use of radar data to improve the numerical forecast of landing typhoon in China. Ensemble Kalman filter uses a set of members to construct background error covariance with "current dependence" characteristics, which is still rare in the study of typhoon data assimilation in China. It is significant to study the numerical prediction of landfall typhoon by using the ensemble Kalman filter to assimilate the land-based radar data in China. Three landfall typhoons Rainbow (1522), Moranti (1010) and Wieson (1409) have been numerically tested in this paper by using the PSU WRF-EnKF assimilation system developed by Penn State University and the radial wind data of land-based radar in China in recent years. It is found that the radar data set contract technique can significantly improve typhoon track, intensity, structure and precipitation simulation. Through the assimilation of the cyclic data, the typhoon position of the field is gradually approaching to the measured position, and the simulation error of the landing point of the typhoon is less than 10km. In the mean of three typhoons, after 8 h cyclic assimilation of radar data, the track error of the typhoon began to show positive effect compared with that before assimilation, and the 60km of the data never assimilated in the assimilation window was reduced to about the 20km after assimilation. The path error can be less than 10km after multi-time cycle assimilation. The typhoon intensity can be improved obviously from the initial stage of cycle assimilation, the mean typhoon intensity error can be reduced to below 10hPa, and the radar data assimilation can significantly strengthen the typhoon. In the analysis of typhoon "rainbow" assimilation, it is also found that with the increase of assimilation data, the structure of the upper layer warm center is obviously strengthened, the maximum wind velocity radius shrinks, the wind hole shrinks, and the convection asymmetric structure is close to the measured data. The assimilation increment shows that the correction of the model background field is gradually concentrated in the typhoon core with the increase of the number of cycles. The data assimilation improves the forecast of typhoon precipitation to some extent, and the more times of assimilation, the more the TS score of precipitation forecast is improved. The radar data are further assimilated into three parts according to the distance from the center of the typhoon, which are less than 100kmm2 100-200km and larger than 200km, respectively. According to the results of Rainbow test, only the data in the radius range of Typhoon 100km are assimilated in the track and intensity of the typhoon. The assimilation effect can be basically the same as that of all the data assimilated in structure, but the assimilation effect is not significant except in the range of 100-200km and 200km. The data and assimilation data in the 100km range of the assimilation core are very close to each other in the three typhoon experiments, and the error of track and intensity after multi-time cyclic assimilation is lower than that of 5km and 5HPA, respectively. It shows that the kernel data is the key to improve the background field, which usually accounts for less than 50% of the total data (varying according to the typhoon case), but restricts the assimilation effect. Only assimilation of this part of data can achieve the same effect as assimilation of all data, but it can reduce by more than half the calculation amount of the original huge set assimilation, and shorten the computer time.
【學(xué)位授予單位】:中國氣象科學(xué)研究院
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:P456.7
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 黃幸媛;我國登陸臺(tái)風(fēng)災(zāi)害的監(jiān)測(cè)及預(yù)報(bào)技術(shù)研究成果交流會(huì)順利召開[J];應(yīng)用氣象學(xué)報(bào);2003年02期
2 ;我國登陸臺(tái)風(fēng)災(zāi)害的監(jiān)測(cè)及預(yù)報(bào)技術(shù)研究[J];Annual Report of CAMS;2003年00期
3 汪鐸,陸叔鳴,陳繼芳,張鐔;近百年東亞登陸臺(tái)風(fēng)的長(zhǎng)期振動(dòng)[J];熱帶氣象;1986年04期
4 勵(lì)申申,壽紹文;登陸臺(tái)風(fēng)維持和暴雨增幅實(shí)例的能量學(xué)分析[J];南京氣象學(xué)院學(xué)報(bào);1995年03期
5 ;我國登陸臺(tái)風(fēng)災(zāi)害的監(jiān)測(cè)及預(yù)報(bào)技術(shù)研究——項(xiàng)目的意義和進(jìn)展[J];Annual Report of CAMS;2002年00期
6 姚才,張誠忠,黃明策;華南登陸臺(tái)風(fēng)“榴蓮”的能量分析[J];氣象;2004年06期
7 楊玉華,雷小途;我國登陸臺(tái)風(fēng)引起的大風(fēng)分布特征的初步分析[J];熱帶氣象學(xué)報(bào);2004年06期
8 于淑秋;王繼志;;“我國登陸臺(tái)風(fēng)災(zāi)害的監(jiān)測(cè)及預(yù)報(bào)技術(shù)研究”通過驗(yàn)收[J];Annual Report of CAMS;2004年00期
9 澎濤涌;“世界氣象組織國際登陸臺(tái)風(fēng)研討會(huì)”在中國澳門舉行[J];氣象學(xué)報(bào);2005年02期
10 李英;;登陸臺(tái)風(fēng)及其暴雨的研究進(jìn)展[J];Annual Report of CAMS;2005年00期
相關(guān)會(huì)議論文 前10條
1 王新敏;趙培娟;李保生;蘇愛芳;;影響河南的登陸臺(tái)風(fēng)路徑分析[A];2007年海峽兩岸氣象科學(xué)技術(shù)研討會(huì)論文集[C];2007年
2 劉鳳淮;陳慧;王蘇;;汛期(6~9月)登陸臺(tái)風(fēng)偏多預(yù)測(cè)探討[A];第26屆中國氣象學(xué)會(huì)年會(huì)熱帶氣旋科學(xué)研討會(huì)分會(huì)場(chǎng)論文集[C];2009年
3 陳勝晶;;福建省登陸臺(tái)風(fēng)與暴雨洪水關(guān)系分析[A];福建省第十三屆水利水電青年學(xué)術(shù)交流會(huì)論文集[C];2009年
4 朱志存;尹宜舟;;中國大陸登陸臺(tái)風(fēng)所引起的暴雨頻數(shù)分布初步分析[A];第七屆長(zhǎng)三角氣象科技論壇論文集[C];2010年
5 錢燕珍;孫軍波;陳佩燕;張程民;;近海及登陸臺(tái)風(fēng)強(qiáng)度預(yù)報(bào)的支持向量機(jī)方法[A];第28屆中國氣象學(xué)會(huì)年會(huì)——S12熱帶氣旋[C];2011年
6 張行才;朱持則;;浙江登陸臺(tái)風(fēng)的風(fēng)險(xiǎn)水平研究[A];中國災(zāi)害防御協(xié)會(huì)風(fēng)險(xiǎn)分析專業(yè)委員會(huì)第二屆年會(huì)論文集(二)[C];2006年
7 岳彩軍;;登陸臺(tái)風(fēng)暴雨的定量分析:“海棠”臺(tái)風(fēng)(2005)個(gè)例研究[A];第七次全國動(dòng)力氣象學(xué)術(shù)會(huì)議論文摘要[C];2009年
8 韓桂榮;唐曉文;魏建蘇;;兩個(gè)登陸臺(tái)風(fēng)不同的發(fā)展過程的對(duì)比分析[A];第二屆長(zhǎng)三角氣象科技論壇論文集[C];2005年
9 徐明;余錦華;高琦;;環(huán)境風(fēng)垂直切變與登陸臺(tái)風(fēng)強(qiáng)度變化關(guān)系的統(tǒng)計(jì)分析[A];第27屆中國氣象學(xué)會(huì)年會(huì)災(zāi)害天氣研究與預(yù)報(bào)分會(huì)場(chǎng)論文集[C];2010年
10 韓桂榮;唐曉文;;登陸臺(tái)風(fēng)變性發(fā)展與消亡的對(duì)比分析[A];2006年海峽兩岸氣象科學(xué)技術(shù)研討會(huì)論文集[C];2006年
相關(guān)重要報(bào)紙文章 前6條
1 南方日?qǐng)?bào)記者 鄧圣耀 通訊員 粵水軒;粵年均登陸臺(tái)風(fēng)居全國之首[N];南方日?qǐng)?bào);2014年
2 記者 郭起豪;今年登陸臺(tái)風(fēng)多但損失小[N];中國氣象報(bào);2008年
3 陳磊;臺(tái)風(fēng)監(jiān)測(cè)預(yù)報(bào)技術(shù)研究通過驗(yàn)收[N];中國氣象報(bào);2004年
4 李曄;賈天清;陳擁君;服務(wù)更加精細(xì)化[N];中國氣象報(bào);2002年
5 王章敏;5月入汛以來全省氣候特點(diǎn)[N];湖北科技報(bào);2006年
6 記者 雷弟明;重慶旱情尚難緩解[N];中華工商時(shí)報(bào);2006年
相關(guān)博士學(xué)位論文 前1條
1 李昕;適用于登陸臺(tái)風(fēng)數(shù)值預(yù)報(bào)的雷達(dá)資料同化理論和應(yīng)用研究[D];南京大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 馬秀梅;我國登陸臺(tái)風(fēng)邊界層風(fēng)場(chǎng)結(jié)構(gòu)和演變特征的多普勒雷達(dá)分析[D];南京大學(xué);2014年
2 林青;華南登陸臺(tái)風(fēng)內(nèi)核區(qū)降水非對(duì)稱結(jié)構(gòu)分析[D];南京大學(xué);2014年
3 馮佳寧;集合卡爾曼濾波(EnKF)岸基雷達(dá)資料同化對(duì)登陸臺(tái)風(fēng)數(shù)值模擬的影響研究[D];中國氣象科學(xué)研究院;2017年
4 姚麗娜;華東地區(qū)登陸臺(tái)風(fēng)降水及路徑的初步研究[D];南京信息工程大學(xué);2008年
5 施程;清代浙江省登陸臺(tái)風(fēng)及其社會(huì)響應(yīng)[D];浙江師范大學(xué);2014年
6 林衛(wèi)華;登陸臺(tái)風(fēng)暴雨的數(shù)值模擬與診斷分析[D];南京信息工程大學(xué);2007年
7 徐明;環(huán)境風(fēng)垂直切變對(duì)登陸臺(tái)風(fēng)活動(dòng)的影響[D];南京信息工程大學(xué);2008年
8 花叢;登陸臺(tái)風(fēng)“羅莎”中云物理特征的數(shù)值模擬研究[D];中國氣象科學(xué)研究院;2010年
9 陳玉林;登陸臺(tái)風(fēng)暴雨成因淺析及其數(shù)值模擬[D];南京信息工程大學(xué);2005年
10 周芯玉;風(fēng)廓線儀多點(diǎn)觀測(cè)網(wǎng)揭示的登陸臺(tái)風(fēng)“天鵝”、“巨爵”低層風(fēng)場(chǎng)結(jié)構(gòu)特征[D];中國氣象科學(xué)研究院;2011年
,本文編號(hào):2212396
本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/2212396.html