天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于高分遙感影像的農(nóng)村居民點提取研究

發(fā)布時間:2018-08-29 09:42
【摘要】:當(dāng)今是3S技術(shù)高速發(fā)展的時代,高分一、二、三號衛(wèi)星的發(fā)射和高分?jǐn)?shù)據(jù)的生產(chǎn),促進(jìn)了3S技術(shù)之一遙感(Remote Sensing)技術(shù)的進(jìn)步。近幾年,數(shù)據(jù)更新速度加快,衛(wèi)星遙感影像空間分辨率已達(dá)到亞米級,高分遙感影像的應(yīng)用不斷增加,而傳統(tǒng)的目視解譯專題信息的方法和提取精度不高的自動、半自動提取方法,已經(jīng)不能滿足應(yīng)用需求,因此,精度高、流程化、智能化的提取方法成為解決這一問題的關(guān)鍵。在各提取方法中,能應(yīng)用于平原地區(qū)的農(nóng)村居民點提取較少,能應(yīng)用于南方丘陵區(qū)的農(nóng)村居民點提取的幾乎沒有,因此,加強(qiáng)對丘陵區(qū)農(nóng)村居民點提取的研究具有重要意義。本文基于高分二號和高分一號衛(wèi)星遙感影像進(jìn)行丘陵區(qū)農(nóng)村居民點的提取研究,以四川省綿陽市三臺縣的秋林鎮(zhèn)為例,分三步提取農(nóng)村居民點,第一步提取農(nóng)村居民點房屋,第二步提取農(nóng)村居民點附屬用地(房屋周圍的林盤、曬壩等用地),第三步合并農(nóng)村居民點房屋和附屬用地。本文使用ENVI系列遙感處理軟件進(jìn)行數(shù)據(jù)預(yù)處理、增強(qiáng)處理以提高數(shù)據(jù)顯示效果、減少噪聲、提高辨識度,再挖掘分析像元光譜信息、空間形狀特征、紋理信息、空間關(guān)系特征、地形特征等,通過對監(jiān)督分類、非監(jiān)督分類、基于專家知識的決策樹分類、基于規(guī)則和樣本的面向?qū)ο笮畔⒎指詈吞崛〉确椒ㄟM(jìn)行實驗研究,提出基于規(guī)則的面向?qū)ο筇卣魈崛》ㄊ翘崛∞r(nóng)村居民點房屋的最優(yōu)方法,并提取出農(nóng)村居民點房屋,再在Arc GIS中利用農(nóng)村居民點房屋與附屬用地的相鄰位置關(guān)系特征和形狀特征,提取出農(nóng)村居民點的附屬用地,再將兩者合并為農(nóng)村居民點,從而實現(xiàn)對目標(biāo)地物農(nóng)村居民點的提取。最后將提取結(jié)果與同年度土地調(diào)查調(diào)繪的農(nóng)村居民點矢量圖進(jìn)行疊加來評價其提取精度,并應(yīng)用于現(xiàn)狀分析。主要研究成果如下:(1)建立基于規(guī)則面向?qū)ο筇卣魈崛》ǖ母叻侄栟r(nóng)村居民點房屋提取模型,以及高分一號城鎮(zhèn)居民點提取模型。(2)結(jié)合基于規(guī)則面向?qū)ο筇卣魈崛》ê虶IS(地理信息系統(tǒng))空間分析法,較精準(zhǔn)地提取出農(nóng)村居民點的位置和形狀,與同年度土地調(diào)查調(diào)繪矢量數(shù)據(jù)相比,其位置精度、形狀精度以及綜合精度達(dá)到85%以上。(3)建立精度評價體系,包括位置精度、形狀精度以及綜合精度,并在Arc GIS中建立精度評價模型。(4)將該研究方法提取的數(shù)據(jù)應(yīng)用于農(nóng)村居民點的現(xiàn)狀分析,發(fā)現(xiàn)農(nóng)村居民點用地存在村莊分布分散和村莊用地規(guī)模小的問題。本文創(chuàng)新點如下:(1)使用高分二號衛(wèi)星遙感影像對丘陵區(qū)的農(nóng)村居民點進(jìn)行提取研究,并結(jié)合基于規(guī)則面向?qū)ο筇卣魈崛》ㄅcGIS空間分析法實現(xiàn)智能化地提取農(nóng)村居民點。(2)在挖掘特征信息中,除了對光譜特征、紋理特征、空間形狀特征進(jìn)行分析,還在地形因子以及空間關(guān)系方面加強(qiáng)了分析。隨著高分遙感數(shù)據(jù)不斷普及,基于高分遙感影像的研究以及對農(nóng)村居民點的研究,在國土監(jiān)測、地理國情普查、城市規(guī)劃、住房建設(shè)、現(xiàn)代農(nóng)業(yè)、災(zāi)害評估、環(huán)境變化預(yù)測等方面提供科學(xué)的依據(jù),為城鄉(xiāng)可持續(xù)發(fā)展提供決策性支持。
[Abstract]:Today is the era of rapid development of 3S technology. The launching of high-resolution satellites and the production of high-resolution data have promoted the progress of remote sensing technology, one of the 3S technologies. The method of visual interpretation of thematic information and the method of automatic and semi-automatic extraction with low precision can no longer meet the needs of application. Therefore, the key to solve this problem is the method of high precision, flowing and intelligent extraction. There are few rural settlements in Hilly area, so it is very important to strengthen the research on the extraction of rural settlements in Hilly area. Based on the remote sensing images of Gaofen-2 and Gaofen-1, this paper studies the extraction of rural settlements in Hilly area. Taking Qiulin Town of Santai County, Mianyang City, Sichuan Province, as an example, it extracts rural settlements in three steps. The first step is to extract rural residential housing, the second step is to extract rural residential ancillary land (forest pan around the house, sun dam and other land), and the third step is to merge rural residential housing and ancillary land. Identity, then mining and analyzing pixel spectral information, spatial shape feature, texture information, spatial relationship feature, terrain feature, etc. Through supervised classification, unsupervised classification, decision tree classification based on expert knowledge, rule-based and sample-based object-oriented information segmentation and extraction methods for experimental research, rule-based orientation is proposed. Object feature extraction method is the best method to extract rural residential housing, and extract rural residential housing, and then in Arc GIS using the adjacent location and shape characteristics of rural residential housing and ancillary land, extract rural residential land, and then merge the two into rural residential areas, so as to achieve the goal. The main research results are as follows: (1) Establish the extraction model of high-grade 2 rural residential housing based on rule-oriented object feature extraction method, and use the method to evaluate the extraction accuracy. (2) Combining the rule-based object-oriented feature extraction method and the spatial analysis method of GIS (Geographic Information System), the location and shape of rural residential areas are extracted more accurately. Compared with the vector data of land survey in the same year, the location precision, shape precision and comprehensive precision of rural residential areas are more than 85%. (3) Establish a precision evaluation system, including position precision, shape precision and comprehensive precision, and establish a precision evaluation model in Arc GIS. (4) Apply the data extracted by this research method to the analysis of the current situation of rural residential areas, and find the problems of scattered village distribution and small scale of rural residential land. The following: (1) Using high-resolution satellite remote sensing image to extract rural residential areas in Hilly areas, and combining rule-based object-oriented feature extraction method and GIS spatial analysis method to achieve intelligent extraction of rural residential areas. (2) In mining feature information, in addition to spectral features, texture features, spatial shape features analysis, but also. With the popularity of high-resolution remote sensing data, research on high-resolution remote sensing images and rural settlements, scientific basis is provided for land monitoring, geographic survey, urban planning, housing construction, modern agriculture, disaster assessment and environmental change prediction. Urban and rural sustainable development provides decision support.
【學(xué)位授予單位】:四川師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:P237

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 周紹光;孫金彥;凡莉;向晶;陳超;;高分辨率遙感影像的建筑物輪廓信息提取方法[J];國土資源遙感;2015年03期

2 張慧穎;薛福亮;;一種利用Vague集理論改進(jìn)的協(xié)同過濾推薦算法[J];現(xiàn)代圖書情報技術(shù);2012年03期

3 劉衷瑞;馮伍法;寧衛(wèi)遠(yuǎn);胥亞;盧茂芬;;基于高分辨率衛(wèi)星影像的居民地信息提取研究[J];影像技術(shù);2012年01期

4 王國強(qiáng);馬軍成;;城鎮(zhèn)住宅用地集約利用評價研究——以鄭州市為例[J];國土資源科技管理;2011年03期

5 譚國強(qiáng);王周龍;王霞;馬金衛(wèi);;基于知識的遙感影像居民地信息提取——以山東省蓬萊市為例[J];山東國土資源;2011年04期

6 陳廣群;劉洋;蘭澤英;;基于高分辨率遙感影像的農(nóng)村居民點內(nèi)部用地信息提取研究[J];城市勘測;2010年03期

7 喬程;駱劍承;吳泉源;沈占鋒;王宏;;面向?qū)ο蟮母叻直媛视跋癯鞘薪ㄖ锾崛J];地理與地理信息科學(xué);2008年05期

8 譚永生;沈掌泉;賈春燕;王珂;;QuickBird全色與多光譜影像融合方法比較研究[J];科技通報;2008年04期

9 何海清;李發(fā)斌;李何超;王勇;;基于權(quán)重與混合模型的遙感圖像分類方法研究[J];國土資源遙感;2008年02期

10 湯泉;牛錚;;基于IDL與ENVI二次開發(fā)的遙感系統(tǒng)開發(fā)方法[J];計算機(jī)應(yīng)用;2008年S1期

相關(guān)博士學(xué)位論文 前1條

1 陳一祥;高分影像空間結(jié)構(gòu)特征建模與信息提取[D];武漢大學(xué);2013年

相關(guān)碩士學(xué)位論文 前10條

1 胡茂瑩;基于高分二號遙感影像面向?qū)ο蟮某鞘蟹课菪畔⑻崛》椒ㄑ芯縖D];吉林大學(xué);2016年

2 黃維江;基于遙感和三維技術(shù)的震后滑坡地質(zhì)災(zāi)害信息提取[D];成都理工大學(xué);2016年

3 劉欣;利用CART算法從LandSat8衛(wèi)星影像提取居民地的研究[D];蘭州大學(xué);2015年

4 李靖涵;居民地增量更新中空間沖突檢測與處理方法研究[D];解放軍信息工程大學(xué);2015年

5 寧佐榮;基于MODIS數(shù)據(jù)的低山丘陵區(qū)水稻估產(chǎn)模型研究[D];西南大學(xué);2014年

6 王蓉;圖像增強(qiáng)算法實現(xiàn)[D];長江大學(xué);2014年

7 吳瑤;基于空間信息技術(shù)的聚落體系研究[D];四川師范大學(xué);2013年

8 包蕾;基于RS與GIS的城中村與山地居民點現(xiàn)狀研究[D];內(nèi)蒙古農(nóng)業(yè)大學(xué);2012年

9 張雷;基于3S技術(shù)的滇池流域土地利用變化研究[D];昆明理工大學(xué);2012年

10 郭春梅;基于RS和GIS的射洪縣土地利用變化與評價研究[D];四川師范大學(xué);2012年



本文編號:2210821

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/2210821.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶37805***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com