基于高分遙感影像的農(nóng)村居民點提取研究
[Abstract]:Today is the era of rapid development of 3S technology. The launching of high-resolution satellites and the production of high-resolution data have promoted the progress of remote sensing technology, one of the 3S technologies. The method of visual interpretation of thematic information and the method of automatic and semi-automatic extraction with low precision can no longer meet the needs of application. Therefore, the key to solve this problem is the method of high precision, flowing and intelligent extraction. There are few rural settlements in Hilly area, so it is very important to strengthen the research on the extraction of rural settlements in Hilly area. Based on the remote sensing images of Gaofen-2 and Gaofen-1, this paper studies the extraction of rural settlements in Hilly area. Taking Qiulin Town of Santai County, Mianyang City, Sichuan Province, as an example, it extracts rural settlements in three steps. The first step is to extract rural residential housing, the second step is to extract rural residential ancillary land (forest pan around the house, sun dam and other land), and the third step is to merge rural residential housing and ancillary land. Identity, then mining and analyzing pixel spectral information, spatial shape feature, texture information, spatial relationship feature, terrain feature, etc. Through supervised classification, unsupervised classification, decision tree classification based on expert knowledge, rule-based and sample-based object-oriented information segmentation and extraction methods for experimental research, rule-based orientation is proposed. Object feature extraction method is the best method to extract rural residential housing, and extract rural residential housing, and then in Arc GIS using the adjacent location and shape characteristics of rural residential housing and ancillary land, extract rural residential land, and then merge the two into rural residential areas, so as to achieve the goal. The main research results are as follows: (1) Establish the extraction model of high-grade 2 rural residential housing based on rule-oriented object feature extraction method, and use the method to evaluate the extraction accuracy. (2) Combining the rule-based object-oriented feature extraction method and the spatial analysis method of GIS (Geographic Information System), the location and shape of rural residential areas are extracted more accurately. Compared with the vector data of land survey in the same year, the location precision, shape precision and comprehensive precision of rural residential areas are more than 85%. (3) Establish a precision evaluation system, including position precision, shape precision and comprehensive precision, and establish a precision evaluation model in Arc GIS. (4) Apply the data extracted by this research method to the analysis of the current situation of rural residential areas, and find the problems of scattered village distribution and small scale of rural residential land. The following: (1) Using high-resolution satellite remote sensing image to extract rural residential areas in Hilly areas, and combining rule-based object-oriented feature extraction method and GIS spatial analysis method to achieve intelligent extraction of rural residential areas. (2) In mining feature information, in addition to spectral features, texture features, spatial shape features analysis, but also. With the popularity of high-resolution remote sensing data, research on high-resolution remote sensing images and rural settlements, scientific basis is provided for land monitoring, geographic survey, urban planning, housing construction, modern agriculture, disaster assessment and environmental change prediction. Urban and rural sustainable development provides decision support.
【學(xué)位授予單位】:四川師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:P237
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 周紹光;孫金彥;凡莉;向晶;陳超;;高分辨率遙感影像的建筑物輪廓信息提取方法[J];國土資源遙感;2015年03期
2 張慧穎;薛福亮;;一種利用Vague集理論改進(jìn)的協(xié)同過濾推薦算法[J];現(xiàn)代圖書情報技術(shù);2012年03期
3 劉衷瑞;馮伍法;寧衛(wèi)遠(yuǎn);胥亞;盧茂芬;;基于高分辨率衛(wèi)星影像的居民地信息提取研究[J];影像技術(shù);2012年01期
4 王國強(qiáng);馬軍成;;城鎮(zhèn)住宅用地集約利用評價研究——以鄭州市為例[J];國土資源科技管理;2011年03期
5 譚國強(qiáng);王周龍;王霞;馬金衛(wèi);;基于知識的遙感影像居民地信息提取——以山東省蓬萊市為例[J];山東國土資源;2011年04期
6 陳廣群;劉洋;蘭澤英;;基于高分辨率遙感影像的農(nóng)村居民點內(nèi)部用地信息提取研究[J];城市勘測;2010年03期
7 喬程;駱劍承;吳泉源;沈占鋒;王宏;;面向?qū)ο蟮母叻直媛视跋癯鞘薪ㄖ锾崛J];地理與地理信息科學(xué);2008年05期
8 譚永生;沈掌泉;賈春燕;王珂;;QuickBird全色與多光譜影像融合方法比較研究[J];科技通報;2008年04期
9 何海清;李發(fā)斌;李何超;王勇;;基于權(quán)重與混合模型的遙感圖像分類方法研究[J];國土資源遙感;2008年02期
10 湯泉;牛錚;;基于IDL與ENVI二次開發(fā)的遙感系統(tǒng)開發(fā)方法[J];計算機(jī)應(yīng)用;2008年S1期
相關(guān)博士學(xué)位論文 前1條
1 陳一祥;高分影像空間結(jié)構(gòu)特征建模與信息提取[D];武漢大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 胡茂瑩;基于高分二號遙感影像面向?qū)ο蟮某鞘蟹课菪畔⑻崛》椒ㄑ芯縖D];吉林大學(xué);2016年
2 黃維江;基于遙感和三維技術(shù)的震后滑坡地質(zhì)災(zāi)害信息提取[D];成都理工大學(xué);2016年
3 劉欣;利用CART算法從LandSat8衛(wèi)星影像提取居民地的研究[D];蘭州大學(xué);2015年
4 李靖涵;居民地增量更新中空間沖突檢測與處理方法研究[D];解放軍信息工程大學(xué);2015年
5 寧佐榮;基于MODIS數(shù)據(jù)的低山丘陵區(qū)水稻估產(chǎn)模型研究[D];西南大學(xué);2014年
6 王蓉;圖像增強(qiáng)算法實現(xiàn)[D];長江大學(xué);2014年
7 吳瑤;基于空間信息技術(shù)的聚落體系研究[D];四川師范大學(xué);2013年
8 包蕾;基于RS與GIS的城中村與山地居民點現(xiàn)狀研究[D];內(nèi)蒙古農(nóng)業(yè)大學(xué);2012年
9 張雷;基于3S技術(shù)的滇池流域土地利用變化研究[D];昆明理工大學(xué);2012年
10 郭春梅;基于RS和GIS的射洪縣土地利用變化與評價研究[D];四川師范大學(xué);2012年
,本文編號:2210821
本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/2210821.html