混凝土中心裂紋巴西圓盤(pán)試件的斷裂行為研究
[Abstract]:Concrete is a kind of multiphase composite material, which plays an irreplaceable role in national life because of its wide application and large dosage. Although concrete materials are widely used, we still do not know enough about them, such as the assessment of the use of cracked concrete foundations, high-rise buildings, bridges, dams, military protective devices, etc., which may be subject to strong temperature difference between day and night, strong pressure, etc. Evaluation of concrete structures subjected to strong winds, impacts, explosions, earthquakes, etc. Therefore, it is very important to study the fracture failure of concrete for the construction and maintenance of engineering. Stress intensity factor (SIF) and T stress are important parameters in fracture mechanics. This paper introduces in detail how to solve the SIF and T stresses of cracked members by using the weight function method, the superdeterministic finite element method and the interaction integration method. The interaction integration method based on extended finite element method (XFEM) is described in detail. The method is more general and accurate, and can be used to solve homogeneous materials. The SIF and T stresses at the crack tip of functionally graded materials and heterogeneous materials with inclusion interfaces under complex working conditions. In addition, In this paper, the maximum tangential stress criterion (MMTS criterion) modified by Ayatollahi et al is introduced in detail, in which the MMTS criterion considers both the singular stress term in the stress field at the crack tip (that is, SIF), and the nonsingular stress term, that is, T in Williams series). Maximum tangential stress criterion for terms A _ 3 and B _ 3). Four different types of specimens (mortar specimen, small particle aggregate concrete specimen, large granular aggregate low strength concrete specimen, large particle aggregate high strength concrete specimen) and different types of crack (pure type I) were studied by using MTS GMTS and MMTS criteria. The crack initiation angle and fracture resistance of Brazilian disc (CCBD) specimen with center crack of pure mode II and I-II composite mode are investigated experimentally and theoretically. The fracture behavior of concrete CCBD specimens predicted by MTS- GMTS and MMTS criterion was compared and analyzed. The results show that compared with the conventional MTS- GMTS criterion, the MMTS criterion can better predict the crack initiation angle and fracture toughness of concrete CCBD specimens, especially in the case of mode II load dominating. The influence of confining pressure on SIF and T stress at crack tip of CCBD specimen was studied by weight function method and interaction integration method. The results show that the precision of the weight function method and the interaction integration method are very high, and the error between them is very small. Confining pressure has important influence on T stress and mode I SIF, but it has no effect on mode II SIF. Large confining pressure will make the crack close. When the ratio of length to diameter and the loading angle are certain, the mode I SIF decreases and the T stress increases with the increase of confining pressure. The critical loading angle of the pure mode II crack depends on the confining pressure. The larger the confining pressure is, the smaller the critical loading angle is. With the confining pressure coefficient increasing to 1, the critical loading angle decreases to 0.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:O346.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前8條
1 張孝思 ,李維伯 ,閻步強(qiáng);含有Ⅲ型中心裂紋的矩形薄板在突然位移作用下的瞬時(shí)效應(yīng)[J];北京航空學(xué)院學(xué)報(bào);1985年01期
2 鄒廣平,張正國(guó),張學(xué)義;中心裂紋板張開(kāi)位移研究[J];哈爾濱工程大學(xué)學(xué)報(bào);1999年01期
3 吳剛,童谷生;中心裂紋板的動(dòng)、靜態(tài)破損實(shí)驗(yàn)研究[J];華東交通大學(xué)學(xué)報(bào);1995年02期
4 劉瑜,李群;含中心裂紋壓電體的二維精確解[J];應(yīng)用力學(xué)學(xué)報(bào);2004年02期
5 孫宏才;高磊;徐關(guān)堯;胥銀華;;矩形板中心裂紋有限元數(shù)值分析[J];解放軍理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年03期
6 劉鵬飛,陶偉明,郭乙木;中心裂紋板塑性功因子的計(jì)算[J];浙江大學(xué)學(xué)報(bào)(工學(xué)版);2004年08期
7 王啟智;有限寬板中心裂紋斷裂過(guò)程區(qū)的長(zhǎng)度和位移公式[J];應(yīng)用力學(xué)學(xué)報(bào);2001年04期
8 吳剛,陳澤光;貫穿的中心裂紋LY12板在動(dòng)靜態(tài)加載條件下的斷裂實(shí)驗(yàn)研究[J];實(shí)驗(yàn)力學(xué);1994年02期
相關(guān)會(huì)議論文 前10條
1 劉歡;;梅山煉鋼廠板坯中心裂紋成因分析[A];中國(guó)金屬學(xué)會(huì)第一屆青年學(xué)術(shù)年會(huì)論文集[C];2002年
2 佟新;宋滿堂;;板坯中心裂紋和三角區(qū)裂紋的成因與防止[A];品種鋼連鑄坯質(zhì)量控制技術(shù)研討會(huì)論文集[C];2008年
3 佟新;;板坯中心裂紋和三角區(qū)裂紋的成因與防止[A];第四屆中國(guó)金屬學(xué)會(huì)青年學(xué)術(shù)年會(huì)論文集[C];2008年
4 賀玉軍;陳俊良;韓建剛;;矩形坯中心裂紋的分析及防止措施[A];2012年微合金鋼連鑄裂紋控制技術(shù)研討會(huì)論文集[C];2012年
5 陳俊良;賀玉軍;韓建剛;;矩形坯中心裂紋的分析及防止措施[A];2012年全國(guó)煉鋼—連鑄生產(chǎn)技術(shù)會(huì)論文集(下)[C];2012年
6 底根順;翟永臻;吳東升;江福先;郭明建;李家征;;連鑄小方坯中心裂紋的研究與分析[A];2005中國(guó)鋼鐵年會(huì)論文集(第3卷)[C];2005年
7 底根順;吳東升;翟永臻;閆衛(wèi)兵;李家征;張明海;;連鑄小方坯中心裂紋的研究[A];第八屆全國(guó)冶金工藝?yán)碚搶W(xué)術(shù)會(huì)議論文專(zhuān)輯[C];2005年
8 張富強(qiáng);李超;姜振生;孟勁松;吳世龍;王霆;王新華;張炯明;朱國(guó)森;栗偉;;連鑄板坯中心裂紋和三角區(qū)裂紋的成因及防止[A];中國(guó)金屬學(xué)會(huì)2003中國(guó)鋼鐵年會(huì)論文集(3)[C];2003年
9 牛士珍;宋波;樊一丁;閆利波;張杰;;熱軋棒材低倍中心裂紋缺陷研究[A];2006年全國(guó)冶金物理化學(xué)學(xué)術(shù)會(huì)議論文集[C];2006年
10 王艷華;田鳳紀(jì);董志強(qiáng);;板坯質(zhì)量攻關(guān)實(shí)踐[A];2006中國(guó)金屬學(xué)會(huì)青年學(xué)術(shù)年會(huì)論文集[C];2006年
相關(guān)碩士學(xué)位論文 前2條
1 侯成;混凝土中心裂紋巴西圓盤(pán)試件的斷裂行為研究[D];太原理工大學(xué);2017年
2 喬亮萍;準(zhǔn)晶反平面中心裂紋問(wèn)題的研究[D];太原理工大學(xué);2017年
,本文編號(hào):2182227
本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/2182227.html