圓形基坑主動土壓力計算方法研究
[Abstract]:Under the influence of circumferential arch effect, the active earth pressure of circular foundation pit is smaller than that of straight side foundation pit. However, in the practical engineering design, due to the lack of perfect theoretical basis and the corresponding calculation method, the designers often use the plane earth pressure theory to calculate the earth pressure of circular foundation pit, which leads to the increase of cost and the waste of resources. In this paper, the calculation model of elastic-plastic problem of circular foundation pit is improved, and the calculation formula of active earth pressure is derived by using axisymmetric slip line method and upper limit method of limit analysis. The influence factors of principal stress coefficient in circular foundation pit soil are calculated and analyzed by numerical simulation method. The main contents are as follows: (1) in the elastic-plastic space axisymmetric problem of circular foundation pit, the toroidal stress is the intermediate principal stress. In this paper, the intermediate principal stress coefficient b, which is assumed to be 蟽 2 = 蟽 胃 = 蟽 3 b (蟽 1- 蟽 3), is introduced to improve the HaarKarman complete plasticity assumption of 蟽 2 = 蟽 1 or 蟽 2 = 蟽 3, which is widely used in the calculation, so that it is more suitable for engineering practice. (2) the slip line field theory is used. The slip line equation of space axisymmetric problem is derived. By simplifying the slip curve of the soil behind the wall into a straight line form and solving the slip line equation, the calculation formula of the earth pressure of the circular foundation pit is obtained, and the distribution model of the earth pressure is analyzed. The results show that the earth pressure of circular foundation pit is nonlinear distribution with the increase of depth, but it can be regarded as a linear distribution form in a shallow range. In addition, the influence of foundation pit radius on earth pressure is analyzed. The results show that the earth pressure increases with the increase of radius and eventually tends to plane Rankine earth pressure. (3) the upper limit method of limit analysis is used. At the same time, the calculation formula of the earth pressure force of circular foundation pit is derived by introducing the coefficient of intermediate principal stress b and considering the internal energy dissipation caused by the work of circumferential stress. The calculated results show that the earth pressure corresponding to different principal stress coefficients b is obviously smaller than that under plane condition. When the radius tends to be very large, the corresponding result of b tends to be the same, that is, the value of Rankine earth pressure in plane case. In addition, when the slope of the failure surface of circular foundation pit is greatly affected by the principal stress coefficient, the larger the slope angle of soil failure surface is, the smaller the slope angle of soil failure surface is, and the smaller the slope angle of soil failure surface is with the increase of radius of circular foundation pit. When the excavation radius is large enough, the slope of the failure surface tends to be 45 擄蠁 / 2. (4) through finite element calculation, the influencing factors of principal stress coefficient and its variation law in circular foundation pit are analyzed. The results show that the radius of foundation pit and the internal friction angle of soil are the main factors affecting the value of the coefficient of principal stress, but the influence of cohesion is small. The smaller the radius of foundation pit and the angle of internal friction, the larger the coefficient of principal stress is and tends to 1.0. In order to facilitate practical engineering application, the author gives the suggested value of principal stress coefficient in the soil of circular foundation pit through a lot of calculation and analysis.
【學位授予單位】:西南交通大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TU432
【相似文獻】
相關期刊論文 前10條
1 喻澤紅;王勇智;王代;;基于能量理論的主動土壓力的計算[J];西部探礦工程;2006年02期
2 胡曉軍;;粘性土主動土壓力庫侖精確解的改進[J];巖土工程學報;2006年08期
3 李富盈;王勇智;;能量理論法計算主動土壓力探討[J];河南科學;2006年06期
4 陳素清;王巖法;;懸臂支護結構主動土壓力分析研究[J];浙江水利科技;2006年06期
5 秦四清;李曉;;非線性庫侖主動土壓力分析理論[J];巖石力學與工程學報;2006年12期
6 官盛飛;凌建明;趙鴻鐸;;剛性擋墻主動土壓力的有限元分析[J];勘察科學技術;2007年06期
7 劉福臣;邵慧;;考慮開挖情況主動土壓力計算[J];水運工程;2008年12期
8 吳愛民;江全勝;肖兵;張尚根;;主動土壓力與位移關系試驗研究[J];常州工學院學報;2008年S1期
9 陳興亮;段德貴;熊傳祥;;基坑工程樁墻結構主動土壓力研究[J];巖土工程界;2009年01期
10 王作偉;楊小禮;;水平地震力對非線性主動土壓力上限解的影響[J];礦業(yè)工程研究;2009年03期
相關會議論文 前10條
1 秦四清;李曉;;非線性庫侖主動土壓力分析理論[A];中國科學院地質與地球物理研究所2006年論文摘要集[C];2007年
2 張永進;陳永輝;;懸臂支護結構上主動土壓力受位移影響分析[A];巖土力學的理論與實踐——第三屆全國青年巖土力學與工程會議論文集[C];1998年
3 賈萍;趙均海;馮紅波;楊青順;;空間主動土壓力簡化計算及參數分析[A];第16屆全國結構工程學術會議論文集(第Ⅱ冊)[C];2007年
4 陳賀;蔣明鏡;張望城;肖俞;;剛性擋土墻平移模式下主動土壓力的理論分析[A];第十一屆全國土力學及巖土工程學術會議論文集[C];2011年
5 柯才桐;陳奕柏;高洪波;謝洪波;;條形荷載下黏性土主動土壓力計算[A];《巖土力學》vol.34 增刊1 2013[C];2013年
6 張年學;李曉;;極限平衡平頂垂直坡的新公式[A];第八屆全國工程地質大會論文集[C];2008年
7 章瑞文;徐日慶;郭印;;考慮土層剪力作用的擋土墻主動土壓力分布研究[A];第一屆中國水利水電巖土力學與工程學術討論會論文集(下冊)[C];2006年
8 張永興;陳林;陳建功;;地震作用下?lián)跬翂χ鲃油翂毫Ψ植寂c側壓力系數[A];自主創(chuàng)新與持續(xù)增長第十一屆中國科協(xié)年會論文集(1)[C];2009年
9 葉建科;麥遠儉;;重力式岸壁碼頭位移調查與分析[A];中國土木工程學會港口工程分會第七屆港口工程技術交流會論文集[C];2011年
10 宋飛;張建民;;超固結土的主動土壓力求解方法[A];第二屆全國巖土與工程學術大會論文集(上冊)[C];2006年
相關博士學位論文 前1條
1 章瑞文;擋土墻主動土壓力理論研究[D];浙江大學;2007年
相關碩士學位論文 前10條
1 李東陽;基于土拱效應和剪應力作用的擋土墻主動土壓力分析[D];鄭州大學;2015年
2 李云鳳;考慮擋土墻位移模式和位移大小的主動土壓力研究[D];安徽建筑大學;2015年
3 何小花;主動土壓力分析方法改進和擋土墻相關設計標準研究[D];中國水利水電科學研究院;2015年
4 王河;繞墻底轉動擋土墻非極限狀態(tài)主動土壓力研究[D];太原理工大學;2016年
5 黃彬彬;考慮擋土墻位移模式的地震主動土壓力擬動力研究[D];南京大學;2013年
6 杜林;地震作用下重力式擋墻永久位移分析[D];西南交通大學;2016年
7 田恒銀;擋土墻主動土壓力計算的研究[D];重慶大學;2016年
8 鹿興;考慮土拱效應擋土墻主動土壓力研究[D];天津大學;2014年
9 馬歡雄;圓形基坑主動土壓力計算方法研究[D];西南交通大學;2017年
10 胡小剛;基坑主動土壓力與支護結構位移的關系研究[D];南京航空航天大學;2006年
,本文編號:2178235
本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/2178235.html