線性模型中嶺估計和M估計的性質(zhì)及應(yīng)用研究
[Abstract]:Linear model is widely used in physics, economics, biology, genetics, game theory and so on. Its parametric estimation model and its corresponding biased estimation methods are one of the classical research topics in the field of solving practical problems with mathematics. In this paper, the methods of ridge parameter estimation and M- estimation in biased estimation are discussed, and some new conclusions are obtained. In the chapter of Ridge estimation in biased estimation, the least square estimation of linear function is introduced, and the advantages and disadvantages of this method are summarized. On the basis of these, the concept and properties of biased ridge estimation under the model satisfying Gauss-Markov hypothesis are given, and the method of improving ridge estimation by means of transformation parameter form is discussed, because of the existence of complex collinearity, Using the least square estimation method often results in the loss of the precision of the estimation parameters. The concept of relative efficiency is introduced. Taking the linear regression model as an example, two new relative efficiencies are defined based on the minimum eigenvalue and mean square error. In this paper, the upper and lower bounds are discussed, and it is proved that the efficiency of ridge estimation is higher than that of least square estimator under the new definition. In the chapter on parameter estimation of M- estimation in biased estimation, the related properties of M- estimation and its research status at home and abroad are introduced. In a new class of estimators, we improve the M- estimation method and discuss the relationship between the improved estimators and the M- estimators. At the same time, based on five assumptions, we discuss whether the M- estimators are consistent and convergent. Finally, it is proved that the combined estimation is consistent and convergent.
【學(xué)位授予單位】:青島科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:O212
【參考文獻】
相關(guān)期刊論文 前10條
1 馮敬海;劉茹菲;黃玉潔;;廣義線性模型的M-估計[J];大連理工大學(xué)學(xué)報;2011年03期
2 王星惠;陸安;;誤差為鞅差序列線性模型參數(shù)M估計的強相合性[J];信陽師范學(xué)院學(xué)報(自然科學(xué)版);2010年04期
3 陳夏;閆莉;;隨機適應(yīng)誤差下線性模型參數(shù)M估計的漸近性質(zhì)[J];應(yīng)用數(shù)學(xué)學(xué)報;2009年06期
4 吳耀華;劉馳宇;;序集抽樣中M估計分布的隨機加權(quán)逼近[J];系統(tǒng)科學(xué)與數(shù)學(xué);2009年05期
5 張燕;鄭群珍;;半?yún)?shù)函數(shù)關(guān)系模型參數(shù)的M估計[J];河南教育學(xué)院學(xué)報(自然科學(xué)版);2008年01期
6 李強;吳翊;;混合樣本線性模型M估計的強相合性[J];應(yīng)用數(shù)學(xué);2007年02期
7 吳群英;混合線性模型M估計的強相合性[J];數(shù)學(xué)物理學(xué)報;2005年01期
8 吳群英;ρ混合、φ混合、ψ混合線性模型M估計的強相合性[J];應(yīng)用數(shù)學(xué);2004年03期
9 楊善朝;線性模型參數(shù)M估計的強相合性[J];數(shù)學(xué)學(xué)報;2002年01期
10 王平華;一般廣義嶺估計的效率[J];成都大學(xué)學(xué)報(自然科學(xué)版);2001年02期
相關(guān)博士學(xué)位論文 前1條
1 徐建文;線性模型參數(shù)的約束有偏估計和預(yù)檢驗估計研究[D];重慶大學(xué);2009年
,本文編號:2177981
本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/2177981.html