水電站壓力管道流固耦合水擊計(jì)算的研究
本文選題:水擊 + 壓力管道; 參考:《昆明理工大學(xué)》2017年碩士論文
【摘要】:管道是水利水電樞紐中一種極其重要的輸水、引水部件,連接管道的閥門或者水泵機(jī)組會(huì)經(jīng)常性地啟閉(停),閥門的啟閉或者水泵機(jī)組的啟停會(huì)造成有壓管道內(nèi)的流體產(chǎn)生水力暫態(tài)過程,當(dāng)這種水力暫態(tài)過程嚴(yán)重時(shí),會(huì)產(chǎn)生水擊這種極端的非恒定流動(dòng)現(xiàn)象。水擊的發(fā)生會(huì)給管道系統(tǒng)的安全運(yùn)行帶來巨大的影響,因?yàn)槠洚a(chǎn)生的巨大的壓強(qiáng)增高或者降低會(huì)以水擊波的形式在管道系統(tǒng)中傳播。當(dāng)管道的約束形式為弱約束形式時(shí)(除了地下埋管等在沿程施加了強(qiáng)約束的管道之外,均可以將其定義為弱約束管道),水擊產(chǎn)生的壓力升高或者降低會(huì)促使管道的振動(dòng),管道的振動(dòng)又會(huì)重新引起新的水力暫態(tài)過程,所以這時(shí)管道系統(tǒng)內(nèi)并存管道、流體兩種介質(zhì)的相互耦合作用,這就是所謂的管道系統(tǒng)中的流固耦合作用。求解水擊的理論可以分為經(jīng)典水擊理論和流固耦合水擊理論。經(jīng)典水擊理論早在200多年前就被有的學(xué)者提出來了,該理論考慮的條件較少且對(duì)真實(shí)情況做了許多簡(jiǎn)化,同時(shí)沒有考慮管道的動(dòng)力特性,由于該理論在指導(dǎo)實(shí)際工業(yè)生產(chǎn)的過程中簡(jiǎn)單易行,雖然其精確度不高,但是在過去一直被廣泛采用。隨著社會(huì)的進(jìn)步和科學(xué)技術(shù)的發(fā)展,尤其是上世紀(jì)60年代以來發(fā)展起來的有限元法等數(shù)值求解技術(shù)在水擊方面的應(yīng)用,使得水擊的流固耦合求解方法吸引了廣大的專家和學(xué)者的注意力。在最近幾十年發(fā)展起來的耦合水擊求解法,其研究歷程經(jīng)歷了由簡(jiǎn)單到復(fù)雜的過程。本文在理清了經(jīng)典水擊理論的數(shù)學(xué)模型及其求解方法(特征線法)的基礎(chǔ)上,重點(diǎn)研究了 ADINA軟件中流體模型和結(jié)構(gòu)模型的計(jì)算程序所用的方程及其離散形式。最后利用ADINA軟件的FSI求解模塊對(duì)本文所要研究的問題做了數(shù)值模擬。整個(gè)流程的具體過程是:首先使用本文第二章所提出的經(jīng)典水擊理論特征線解法和第三章提出的流固耦合水擊交錯(cuò)積分弱耦合解法對(duì)同一個(gè)模型進(jìn)行了求解,并通過兩種算法的求解結(jié)果做了對(duì)比,說明使用流固耦合算法來計(jì)算水擊的必要性;然后基于ADINA軟件對(duì)不同閥門關(guān)閉時(shí)間、不同管道長(zhǎng)度、不同管壁厚度等情況做了流固耦合數(shù)值模擬;最后采用英國(guó)丹迪大學(xué)的壓力管道的流固耦合實(shí)驗(yàn)數(shù)據(jù)和本文所提出的流固耦合計(jì)算做了對(duì)比,驗(yàn)證了本文所使用的流固壀合算法的合理性。
[Abstract]:The pipeline is an extremely important water conveyance and diversion component in the water conservancy and hydropower hub. The valve or pump unit connected to the pipeline will open and close frequently (stop, the opening and closing of the valve or the start and stop of the pump unit will result in the hydraulic transient process of the fluid in the pressurized pipeline, when the hydraulic transient process is serious, Water hammer is an extreme unsteady flow phenomenon. The occurrence of water hammer will bring great influence to the safe operation of pipeline system, because the great pressure increase or decrease will propagate in the form of water hammer wave in pipeline system. When the constraint form of a pipeline is a weak constraint form (except for a pipeline with strong constraints along the path, such as buried underground pipes, etc., it can be defined as a weakly constrained pipeline, the increase or decrease of pressure generated by water hammer will promote the vibration of the pipeline. The vibration of pipeline will cause new hydraulic transient process again, so the interaction between fluid and fluid in pipeline system is called fluid-solid coupling. The theory of solving water hammer can be divided into classical water hammer theory and fluid-solid coupling water hammer theory. The classical water hammer theory was put forward by some scholars as early as 200 years ago. The theory takes less conditions into account, simplifies the real situation and fails to take into account the dynamic characteristics of pipelines. Because the theory is simple and easy to use in the process of guiding actual industrial production, although its precision is not high, it has been widely used in the past. With the progress of society and the development of science and technology, especially the application of numerical solution technology such as finite element method developed since 1960s in water hammer, The fluid-solid coupling solution of water hammer has attracted the attention of many experts and scholars. The coupled water hammer solution developed in recent decades has experienced a process from simple to complex. On the basis of clarifying the mathematical model of classical water hammer theory and its solution (characteristic line method), the equations and discrete forms of fluid model and structure model in Adina software are studied in this paper. Finally, the FSI solution module of Adina software is used to simulate the problems to be studied in this paper. The concrete process of the whole process is as follows: firstly, the same model is solved by the characteristic line method of the classical water hammer theory proposed in the second chapter of this paper and the weak coupling solution of the fluid-solid coupling water hammer staggered integral proposed in the third chapter. The results of the two algorithms are compared to illustrate the necessity of using the fluid-solid coupling algorithm to calculate the water hammer, and then based on Adina software, the different valve closing time and the different pipe length are analyzed. Numerical simulation of fluid-solid coupling has been done with different wall thickness. Finally, the fluid-solid coupling experimental data of the pressure pipeline of the University of Dandy in England have been compared with the fluid-solid coupling calculation proposed in this paper. The rationality of the fluid-solid combination algorithm used in this paper is verified.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TV732.4;TV134.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張杰;;基于多物理場(chǎng)的管道強(qiáng)度與模態(tài)分析(三)管道的流固耦合模態(tài)分析[J];CAD/CAM與制造業(yè)信息化;2014年04期
2 孫可明,梁冰,朱月明;考慮解吸擴(kuò)散過程的煤層氣流固耦合滲流研究[J];遼寧工程技術(shù)大學(xué)學(xué)報(bào)(自然科學(xué)版);2001年04期
3 王建軍,李其漢,朱梓根,陸明萬(wàn),張雄;自由液面大晃動(dòng)的流固耦合數(shù)值分析方法研究進(jìn)展[J];力學(xué)季刊;2001年04期
4 郭術(shù)義,陳舉華;流固耦合應(yīng)用研究進(jìn)展[J];濟(jì)南大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年02期
5 王建;金志浩;;輸流管道流固耦合非線性動(dòng)力學(xué)分析[J];沈陽(yáng)化工學(xué)院學(xué)報(bào);2007年04期
6 王征;吳虎;賈海軍;;流固耦合力學(xué)的數(shù)值研究方法的發(fā)展及軟件應(yīng)用概述[J];機(jī)床與液壓;2008年04期
7 李艷華;柳貢民;馬俊;;考慮流固耦合的典型管段結(jié)構(gòu)振動(dòng)特性分析[J];振動(dòng)與沖擊;2010年06期
8 郝婷s,
本文編號(hào):1996405
本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/1996405.html