天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

我國典型潮間帶沉積物中氮污染狀況及浮游細菌群落對氮污染的響應

發(fā)布時間:2018-05-12 17:50

  本文選題:潮間帶 + 沉積物; 參考:《中國科學院煙臺海岸帶研究所》2017年碩士論文


【摘要】:我國潮間帶沉積物中存在突出的氮污染問題。然而,關于潮間帶沉積物中氮污染來源、評價乃至修復的研究尚不完備。本研究對我國11個潮間帶沉積物中的氮素來源與濃度水平進行了綜合分析,并采取直接和間接的方式對沉積物氮污染狀況進行評價。同時,選取山東半島潮間帶作為典型的研究地點,針對部分細菌具有降解、利用氮素污染物的特征,探索了不同氮污染條件下浮游細菌的群落結構差異,旨在發(fā)現(xiàn)對氮素污染物響應較為靈敏的菌種用于后期氮污染的生物治理。主要研究工作與成果表述如下:(1)于2014年9至11月(干季)和2015年6至8月(濕季),分別在大遼河口、澗河河口、黃河口、大沽河口、蘇北淺灘、長江口、杭州灣南岸、閩江口、九龍江口、珠江口、東寨港進行樣品的采集工作,測定了各潮間帶上覆海水及間隙水中氮素營養(yǎng)鹽的含量、沉積物中總氮(TN)、穩(wěn)定氮同位素(δ~(15)N)、碳氮比(C/N)等參數(shù)。分析結果表明:在干季,上覆海水樣品中總可溶性氮(TDN)濃度介于20.1~123.7μmol/L之間,TDN濃度的最高值和最低值分別出現(xiàn)在大遼河口和蘇北淺灘;在濕季,TDN濃度介于61.8~335.3μmol/L之間,TDN濃度的最高值和最低值分別出現(xiàn)在九龍江口和蘇北淺灘中。間隙水樣品中TDN濃度相對較高;在干季,間隙水樣品中TDN濃度處于30.1~177.8μmol/L之間,TDN濃度的最高值和最低值分別出現(xiàn)在珠江口和長江口中;在濕季,間隙水樣品中TDN濃度處于90.7~357.9μmol/L之間,TDN濃度的最高值和最低值分別出現(xiàn)在澗河河口和東寨港中。在干季,沉積物中TN的含量處于168.9~900.9μg/g之間,TN含量的最高值和最低值分別出現(xiàn)在九龍江和黃河口中;在濕季,沉積物中TN的含量處于177.6~1125μg/g之間,TN含量的最高值和最低值分別出現(xiàn)在澗河河口和黃河口中。(2)在干季,沉積物中δ~(15)N數(shù)值處于4.3‰~8.0‰之間,δ~(15)N數(shù)值的最高值和最低值分別出現(xiàn)在澗河河口和東寨港中;在濕季,δ~(15)N數(shù)值處于3.1‰~7.2‰之間,δ~(15)N數(shù)值的最高值和最低值分別出現(xiàn)在澗河河口和東寨港中。δ~(15)N數(shù)值在黃河口、蘇北淺灘以及東寨港中基本處于海源硝酸鹽的范圍中(3‰~5‰),而在其它站位δ~(15)N數(shù)值均超過5‰,且δ~(15)N數(shù)值在大遼河口、澗河河口以及大沽河口中顯著高于其它站位,表明氮素輸入受人類活動的影響較大。在干季,沉積物中C/N處于7.7~14.7之間,而在濕季處于8.2~14.6之間,說明沉積物中的有機質是海洋和陸源有機物的混合。C/N比值在長江口、閩江口、九龍江口以及珠江口相對較高(12),表明陸源輸入較大。然而,C/N在黃河口和蘇北淺灘中的相對較低,且在干季接近海源有機質的C/N范圍之中(5~8)。根據(jù)不同潮間帶的氮素分布狀況,結合δ~(15)N、C/N、地理位置以及人類活動數(shù)據(jù)綜合分析潮間帶沉積物中氮素來源狀況,發(fā)現(xiàn)化肥的使用、養(yǎng)殖、污水排放以及河流運輸?shù)仁浅遍g帶沉積物中氮素的主要來源。(3)采用直接和間接的評價方式分別對潮間帶沉積物、上覆水及間隙水中的氮污染狀況進行評估,進而全面的反映不同潮間帶地區(qū)沉積物中氮污染狀況。評價結果共同揭示了非河口區(qū)沉積物中氮污染程度比河口區(qū)氮污染程度相對較輕;徑流量較小的河口地區(qū)比徑流量大的河口地區(qū)沉積物中氮污染程度高;降雨及河流運輸可能在濕季輸送大量的氮素物質到潮間帶地區(qū)使潮間帶地區(qū)氮污染程度相對較重。(4)為探究不同氮污染條件下細菌群落結構的差異性,于2014年7月在養(yǎng)馬島石灘與泥灘區(qū)、辛安河沙灘區(qū)、黃河三角洲堿蓬與米草區(qū)、天鵝湖海草區(qū)以及煙臺月亮灣近海七個地點開展了浮游細菌的樣品采集工作。通過提取潮間帶海水樣品的總DNA,構建16S rDNA克隆文庫,分析細菌群落結構組成;并利用群落相似性分析(ANOSIM)和非度量多維尺度轉換排序(NMDS)探究不同氮污染條件下細菌的群落結構差異。發(fā)現(xiàn)氮素物質的含量及多樣化對不同潮間帶地區(qū)浮游細菌群落結構具有較大影響,且植被覆蓋能通過吸收氮素物質、釋放多種類型有機質的方式使環(huán)境中的浮游細菌群里結構發(fā)生變化。養(yǎng)馬島石灘區(qū)由于污水排放等因素造成的水體富營養(yǎng)化對浮游細菌結構產生了較大的影響,大量的有機氮等物質致使γ-變形菌中的交替單胞菌科細菌成為石灘區(qū)的優(yōu)勢菌種,其對今后篩選功能菌株用于生物除氮的工作具有重要意義。
[Abstract]:There is an outstanding problem of nitrogen pollution in the intertidal sediments of China. However, the research on the source of nitrogen pollution in the intertidal sediments, evaluation and even restoration is not complete. The nitrogen sources and concentration levels in the sediments of 11 intertidal zones in China are synthetically analyzed, and the nitrogen pollution in the sediment is taken directly and indirectly. At the same time, the intertidal zone in Shandong peninsula was selected as a typical research site. In view of the degradation of some bacteria and the characteristics of nitrogen pollutants, the diversity of the community structure of planktonic bacteria under different nitrogen pollution conditions was explored. The purpose was to find the more sensitive species of nitrogen contaminants in the later nitrogen pollution. The main research work and results are described as follows: (1) from 9 to November (dry season) in 2014 and 6 to August 2015 (wet season), samples were collected in the great Liao River Estuary, Jiaohe estuary, the Yellow River Estuary, Dagu estuary, the northern Jiangsu shoal, the Yangtze Estuary, the southern bank of the Hangzhou Bay, the Minjiang estuary, the Kowloon estuary, the Pearl River Estuary and the East Village port. The content of nitrogen nutrients in seawater and interstitial water, total nitrogen (TN), stable nitrogen isotope (delta ~ (15) N), carbon nitrogen ratio (C/N) and other parameters. The results showed that the total soluble nitrogen (TDN) concentration in the overlying sea water samples was between 20.1~123.7 and mol/L in dry season, and the highest and lowest value of TDN concentration appeared in the estuary of the great Liao River and North Jiangsu, respectively. In the wet season, the concentration of TDN is between 61.8~335.3 and mol/L, the maximum and minimum of TDN concentration appear in the Jiulong River Estuary and the northern Jiangsu shoal respectively. The TDN concentration in the interstitial water samples is relatively high; in the dry season, the TDN concentration in the interstitial water samples is between 30.1~177.8 u mol/L, and the highest and lowest TDN concentration in the Pearl River Estuary respectively. In the wet season, the concentration of TDN in the wet season is between 90.7~357.9 and mol/L, and the highest and lowest TDN concentration in the River Estuary and the East Village port respectively. In the dry season, the content of TN is between 168.9~900.9 and g/g, the highest value and the lowest value of TN content appear in the nine Longjiang and the Yellow River Estuary, respectively. The content of TN in the sediments is between 177.6~1125 and g/g, and the highest and lowest values of TN content appear in the River Estuary and the Yellow River Estuary respectively. (2) in the dry season, the delta ~ (15) N values are between 4.3 and ~8.0 per thousand, the highest value and the lowest value of the delta ~ (15) N value appear in the Jianhe estuary and Dong Zhai harbor respectively; in the wet season, the delta ~ (15) N number The maximum value and minimum value of the value of delta ~ (15) N value are in Jianhe estuary and Dong Zhai harbor respectively. Delta ~ (15) N values are in the Yellow River Estuary, North Jiangsu shoal and Dong Zhai harbor in the range of marine nitrate (3 per thousand ~5 per thousand), and the value of delta ~ (15) N at other stations is more than 5 per thousand, and the delta ~ (15) N value is in the estuary. The River Estuary and Dagu estuary were significantly higher than other stations, indicating that nitrogen input was greatly influenced by human activity. In the dry season, C/N was between 7.7~14.7 and in the wet season between 8.2~14.6, indicating that the organic matter in the sediments was a mixed.C/N ratio of marine and terrestrial organic matter in the Yangtze Estuary, the Minjiang mouth, and the Kowloon River Estuary. And the relatively high estuary of the Pearl River (12) indicates that the input of the land source is relatively large. However, C/N is relatively low in the Yellow River Estuary and the northern Jiangsu shoal, and is in the C/N range near the sea source organic matter (5~8). According to the nitrogen distribution in the different intertidal zones, the intertidal sediments are synthetically analyzed in combination with the delta ~ (15) N, C/N, geographical location and human activity data. The main source of nitrogen in intertidal sediment is the use of chemical fertilizer, culture, sewage discharge and river transportation. (3) the direct and indirect evaluation methods are used to evaluate the nitrogen pollution in intertidal sediments, overlying water and interstitial water respectively, and then reflect the precipitation in different intertidal zones. The results of the evaluation of nitrogen pollution in the sediments reveal that nitrogen pollution in the non estuarine sediments is relatively lighter than that in the estuarine area, and the level of nitrogen pollution in the estuarine area with the smaller runoff is higher than that in the estuarine area with large runoff, and the rainfall and river transport may transport a large amount of nitrogen material to the intertidal zone in the wet season. The degree of nitrogen pollution in the intertidal zone was relatively heavy. (4) in order to explore the diversity of bacterial community structure under different nitrogen pollution conditions, in July 2014, planktonic bacteria were carried out at seven sites in the maisan beach and mudflat area, the Sima river beach area, the the Yellow River Delta and the rice grass area, the Swan Lake seagrass area and the Yantai Bay Bay. Sample collection work. By extracting the total DNA of the sea water samples from the intertidal zone, the 16S rDNA clone library was constructed and the structure of the bacterial community was analyzed. The community similarity analysis (ANOSIM) and the non metric multidimensional scale conversion ranking (NMDS) were used to explore the diversity of the community structure of bacteria under different nitrogen pollution conditions. The structure of planktonic bacteria community in different intertidal zones has great influence, and the vegetation cover can change the structure of planktonic bacteria in the environment by absorbing nitrogen substances and releasing various types of organic matter. A large amount of organic nitrogen, such as organic nitrogen, makes the alternating monobacteria in gamma deformable bacteria become the dominant species in the beach area. It is of great significance to screening functional strains for biological nitrogen removal in the future.

【學位授予單位】:中國科學院煙臺海岸帶研究所
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:X55;X172;Q938.8

【相似文獻】

相關期刊論文 前10條

1 姬亞東,張黎,錢會;銀川地區(qū)地下水氮污染原因及防治[J];地球科學與環(huán)境學報;2005年03期

2 劉鳳春;郎貴林;;牡丹江市大氣中的二氧化氮污染控制對策[J];黑龍江科技信息;2012年07期

3 劉鳳春;;“十一五”牡丹江流域氮污染特征初探[J];黑龍江科技信息;2012年16期

4 施秀芬;貝小戎;;加利福尼亞海灣遭遇氮污染[J];科學生活;2005年06期

5 李旭豐;;全球氮排放與氮污染[J];國外科技動態(tài);2006年03期

6 張慧;丁愛中;;關注地下水氮污染[J];百科知識;2008年01期

7 王維;;氮污染,危害堪比二氧化碳[J];科學大眾(中學版);2009年06期

8 方薏;;比二氧化碳更嚴重的氮污染[J];大科技(百科新說);2011年07期

9 羅丹;隱形森林殺手 氮污染問題迫在眉睫[J];國外科技動態(tài);2003年11期

10 陳新明;馬騰;蔡鶴生;王妍妍;;地下水氮污染的區(qū)域性調控策略[J];地質科技情報;2013年06期

相關會議論文 前2條

1 孫強;劉天霸;秦四清;胡秀宏;;石家莊市地下水氮污染檢測分析[A];中國科學院地質與地球物理研究所2006年論文摘要集[C];2007年

2 司富春;王振旭;宋雪杰;;氮污染與食管癌相關病因學研究[A];Proceedings of Conference on Environmental Pollution and Public Health(CEPPH 2012)[C];2012年

相關重要報紙文章 前6條

1 毛文波;科學家成功繪制全球二氧化氮污染圖[N];科技日報;2004年

2 曹麗君;地球二氧化氮污染嚴重[N];人民日報;2004年

3 華凌;削減電廠排放可減輕流域氮污染[N];科技日報;2013年

4 高崗栓;加劇龍城二氧化氮污染的罪魁禍首[N];太原日報;2006年

5 本報記者 張曄 通訊員 蔡立;“氮”何時成了雙刃劍?[N];科技日報;2004年

6 段雷;“減氮”也重要[N];人民日報;2011年

相關博士學位論文 前2條

1 姜廷亮;分區(qū)式PRB修復地下水氮污染技術研究[D];中國地質大學(北京);2014年

2 高增文;山區(qū)水庫氮污染行為與控制技術研究[D];中國海洋大學;2008年

相關碩士學位論文 前10條

1 吳慶樂;太湖西部南河水系及入湖區(qū)域氮污染物來源及轉化途徑研究[D];南京大學;2015年

2 任娟;淺層地下水氮污染對氮代謝微生物影響及其生化修復研究[D];浙江大學;2016年

3 潘田;太湖流域淺層地下水氮污染與湖水污染之關系研究[D];南京大學;2013年

4 趙佩文;不同氮污染水體中微生物對環(huán)境的生態(tài)響應[D];華中農業(yè)大學;2016年

5 王恩輝;我國典型潮間帶沉積物中氮污染狀況及浮游細菌群落對氮污染的響應[D];中國科學院煙臺海岸帶研究所;2017年

6 胡鈺;流域種植業(yè)面源氮污染監(jiān)測及負荷估算[D];中國環(huán)境科學研究院;2012年

7 徐志紅;靖江市水稻種植期間非點源氮污染負荷計算及控制對策[D];南京理工大學;2002年

8 劉麗雅;渾河傍河區(qū)地下水氮污染來源貢獻識別[D];中國地質大學(北京);2013年

9 姬亞東;銀川地區(qū)地下水質量評價及氮污染成因分析[D];長安大學;2003年

10 劉健;渭河流域非點源氮污染分布式模擬研究[D];西安理工大學;2008年

,

本文編號:1879555

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/1879555.html


Copyright(c)文論論文網All Rights Reserved | 網站地圖 |

版權申明:資料由用戶abea5***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com