天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

泄洪洞水擊數(shù)值模擬研究

發(fā)布時間:2018-04-30 01:41

  本文選題:特征線法 + 水擊; 參考:《西北農(nóng)林科技大學(xué)》2017年碩士論文


【摘要】:泄洪洞作為水利樞紐的主要泄水建筑物,保障樞紐安全運行。工作閘門位于泄洪洞末端,閘門的安全運行是泄洪洞發(fā)揮泄洪作用的必要條件,閘門運行過程中產(chǎn)生的水擊可能引起閘門結(jié)構(gòu)振動破壞。采用已發(fā)展成熟的特征線法進行泄洪洞水擊的數(shù)值模擬,研究成果可為工作閘門的設(shè)計和閘門運行方案的制定提供參考。高水頭、大流量泄洪洞的特點是水流流速高,應(yīng)考慮流速對水擊壓強的影響。本文主要研究內(nèi)容及研究結(jié)果:(1)當(dāng)工作閘門勻速啟閉時,盡管閘門啟閉速度較小,但其運行過程中仍然伴隨有水擊現(xiàn)象的產(chǎn)生,水擊壓強周期性變化,往復(fù)作用于閘門上,可使閘門產(chǎn)生振動和噪音,甚至發(fā)生共振現(xiàn)象,導(dǎo)致閘門結(jié)構(gòu)破壞。水擊問題對泄洪洞的安全運行很重要,應(yīng)當(dāng)對其進行深入研究。(2)保持恒定流時工作閘門前水流壓強不變且閘門啟閉時間一定,數(shù)值模擬L=100m、L=300m、L=600m和L=900m四種洞長情況下的水擊壓強,分析對比計算結(jié)果可得出如下結(jié)論:工作閘門勻速啟閉時,泄洪洞不同洞長情況下均有水擊現(xiàn)象產(chǎn)生。泄洪洞洞長越大,水擊壓強振幅越大、振蕩時間越長,水擊作用于閘門上的瞬時荷載越大且作用時間越長,越容易引起閘門結(jié)構(gòu)共振。在設(shè)計閘門結(jié)構(gòu)和制定閘門啟閉方案時,需考慮泄洪洞洞長對水擊壓強特性的影響,尤其當(dāng)泄洪洞較長時,應(yīng)盡量避免因水擊作用時間過長、水擊壓強振幅過大而引起閘門結(jié)構(gòu)破壞,影響泄洪洞以及整個水力樞紐的安全運行。(3)通過水工模型試驗測出陜西省三河口水利樞紐泄洪底孔工作閘門上典型測點的脈動壓力,再運用特征線法數(shù)值計算三河口泄洪底孔水擊壓強,最后將水擊壓強特性和脈動壓強特性進行對比分析,結(jié)果表明:水擊壓強振蕩頻率大于脈動壓強脈動頻率,水擊壓強振幅大于脈動壓強振幅,即水擊壓強振蕩強度大于脈動壓強脈動強度。當(dāng)水擊壓強振蕩頻率和工作閘門自振頻率接近時,由于水擊壓強作用于閘門上的瞬時荷載大于脈動壓強作用于閘門上的瞬時荷載,所以水擊壓強比脈動壓強更容易引起閘門結(jié)構(gòu)振動。當(dāng)設(shè)計三河口泄洪底孔工作閘門時,應(yīng)當(dāng)著重考慮水擊壓強對閘門結(jié)構(gòu)的影響,而非脈動壓強,并且閘門自振頻率應(yīng)當(dāng)盡量避開水擊壓強振蕩頻率(5.39Hz),防止因閘門自振頻率和水擊壓強振蕩頻率耦合而發(fā)生閘門結(jié)構(gòu)共振破壞,為泄洪洞的安全泄洪提供保障。(4)在茨哈峽水電站泄洪洞工作閘門開啟和關(guān)閉兩種閘門運行工況下,對泄洪洞水擊進行數(shù)值計算,并保持工作閘門啟閉時間不變,改變閘門啟閉方式,數(shù)值模擬泄洪洞工作閘門不同啟閉方式下的水擊壓強,分析模擬結(jié)果可得:當(dāng)工作閘門勻速開啟時,水擊發(fā)生于閘門開啟初始階段,水擊壓強振幅呈對數(shù)規(guī)律遞減;當(dāng)工作閘門勻速關(guān)閉時,水擊發(fā)生于閘門關(guān)閉后階段,水擊壓強振幅呈指數(shù)規(guī)律遞減;工作閘門關(guān)閉工況下的水擊壓強振蕩時間大于閘門開啟工況下的水擊壓強振蕩時間。在設(shè)計茨哈峽水電站泄洪洞工作閘門時,應(yīng)避免因工作閘門自振頻率和泄洪洞水擊壓強振蕩頻率(0.42Hz)耦合而引發(fā)閘門共振破壞。閘門運行方式對水擊壓強振蕩頻率沒有影響,但對水擊壓強振幅影響較大。工作閘門加速開啟、減速關(guān)閉的運行方式可有效降低水擊對閘門結(jié)構(gòu)的影響,甚至可忽略水擊影響,排除了因水擊壓強振蕩而引起閘門結(jié)構(gòu)破壞的安全隱患,故推薦泄洪洞工作閘門采用加速開啟、減速關(guān)閉的運行方式,例如當(dāng)茨哈峽水電站泄洪洞工作閘門以0.000016m/s2的加速度開啟、以-0.000016m/s2的加速度關(guān)閉時,水擊對閘門結(jié)構(gòu)的影響可顯著減小。
[Abstract]:Hongdong, as the main discharge building of the hydro junction, ensures the safe operation of the hub. The working gate is located at the end of Hongdong. The safe operation of the gate is a necessary condition for discharging the flood discharge of Hongdong. The water shock produced during the operation of the gate may cause the vibration of the gate to be broken. The numerical simulation of the hole water hammer can provide reference for the design of the working gate and the formulation of the gate operation scheme. The high water head, the large flow discharge Hongdong is characterized by high flow velocity and the influence of the flow velocity on the water hammer pressure. The main contents and results are as follows: (1) the opening and closing speed of the sluice gate, in spite of the constant opening and closing of the gate, is the main research results. It is small, but it is still accompanied by water shock phenomenon in its operation, the periodic change of water hammer pressure and reciprocating on the gate can cause vibration and noise of the gate, even resonance phenomenon, resulting in the destruction of the gate structure. The water hammer problem is very important to the safe transportation of Hongdong. It should be studied in depth. (2) keep constant When the flow pressure is constant in front of the working gate and the opening and closing time of the gate is certain, the water hammer pressure is simulated under four holes of L=100m, L=300m, L=600m and L=900m. The result of analysis and comparison can draw the following conclusion: when the working gate is open and closed at a constant speed, there are water strikes in the case of different holes in Hongdong. The longer the cave length is, the greater the hole length of the flood discharge, the greater the hole length of the flood discharge. The greater the amplitude of the water hammer pressure, the longer the oscillation time, the greater the instantaneous load on the gate and the longer the action time, the more easy to cause the resonance of the gate structure. In designing the gate structure and making the gate opening and closing scheme, the influence of the length of the Hongdong hole to the pressure characteristics of the water hammer should be taken into consideration, especially when the Hongdong is long, we should try to avoid the cause. The time of water hammer is too long and the amplitude of water hammer pressure is too large, which causes the failure of the gate structure and affects the safe operation of the Hongdong and the whole hydraulic hub. (3) the hydrodynamic model test is used to measure the pulsating pressure of the typical point on the working gate of the bottom hole of the three estuary water conservancy project, and then the characteristic line method is used to calculate the flood discharge of the three estuarine estuary. The water hammer pressure characteristics are compared with the pressure intensity characteristics of the water hammer. The results show that the oscillation frequency of the water hammer pressure is greater than the pulsating pressure fluctuation frequency, and the amplitude of the water hammer pressure is greater than the fluctuating pressure amplitude, that is, the intensity of the water hammer pressure is greater than the pulse pressure intensity. When the vibration frequency is close, the instantaneous load on the gate is larger than the instantaneous load on the gate on the gate, so the water hammer pressure is more likely to cause the vibration of the gate structure than the pulsating pressure. The effect of the water hammer pressure on the gate structure should be seriously considered when designing the working gate of the three estuarine bottom hole. Pulsating pressure, and the gate self vibration frequency should avoid water hammer pressure oscillation frequency (5.39Hz) as far as possible to prevent the resonance damage of gate structure caused by the coupling of gate self vibration frequency and water hammer pressure oscillation frequency, and provide guarantee for safe discharge in Hongdong. (4) two gates are opened and closed at the sluice gate of Hongdong hydropower station. Under the operating condition, the water hammer in Hongdong is calculated, and the opening and closing time of the working gate is kept constant, the opening and closing mode of the gate is changed, and the water hammer pressure is simulated under the different open and close modes of the work gate of Hongdong. The analysis of the simulation results can be obtained: when the working gate is open at a constant speed, the water hammer occurs at the initial stage of the gate opening and the amplitude of the water hammer pressure. When the working gate closes at a constant speed, the water strike occurs after the gate closes, the amplitude of the water hammer pressure decreases exponentially, and the water hammer pressure oscillation time under the working gate closes is greater than the water hammer pressure oscillation time under the opening of the gate. The gate resonance destruction is caused by the free vibration frequency of the working gate and the coupling of the pressure oscillation frequency (0.42Hz) of the Hongdong water strike pressure. The operation mode of the gate has no effect on the frequency of the water hammer pressure oscillation, but it has great influence on the amplitude of the water hammer pressure. The working mode of the working gate is accelerated and the slow down and closing can effectively reduce the effect of the water hammer on the gate structure. Sound, even neglecting the impact of water hammer, excluding the safety hidden danger of the destruction of gate structure caused by the water hammer pressure oscillation, it is recommended that the Hongdong work gate adopt acceleration opening and slow down the operation mode, for example, when the sluice gate of the SSHA Gorge Hydropower Station opens the Hongdong gate with 0.000016m/s2 acceleration, it closes with the acceleration of -0.000016m/s2. The impact of water hammer on the structure of the gate can be reduced significantly.

【學(xué)位授予單位】:西北農(nóng)林科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TV135.2

【相似文獻】

相關(guān)期刊論文 前10條

1 朱咸;壩體泄洪洞的一些水力計算問題[J];水利水電技術(shù);1964年08期

2 鄧祥輝;王波;;關(guān)于泄洪洞水力設(shè)計中空蝕問題的探討[J];楊凌職業(yè)技術(shù)學(xué)院學(xué)報;2007年01期

3 張國強;唐家灣水庫泄洪洞水工模型試驗研究[J];科技情報開發(fā)與經(jīng)濟;2004年10期

4 王英奎;江春波;;流動減阻技術(shù)在泄洪洞模型中的應(yīng)用[J];水力發(fā)電學(xué)報;2010年04期

5 曹雪玲,杜衛(wèi)兵,曹宏亮;陸渾水庫泄洪洞混凝土裂縫修補加固[J];河南科學(xué);2004年03期

6 鄭春成;;湯河水庫泄洪洞多功能運用存在的問題及對策研究[J];中國科技信息;2012年02期

7 賀昌林;余挺;張建民;許唯臨;彭勇;;長泄洪洞模型糙率修正方法研究[J];四川大學(xué)學(xué)報(工程科學(xué)版);2007年06期

8 王英奎;江春波;;泄洪洞進口立軸漩渦的試驗觀測設(shè)計[J];實驗技術(shù)與管理;2010年06期

9 郭紅民;李江;覃閃;謝洋;;潘口水電站泄洪洞三維數(shù)值模擬[J];水電能源科學(xué);2014年04期

10 王龍;;亭口水庫反調(diào)節(jié)蓄水工程泄洪洞工程泄洪洞洞身砼襯砌施工管理淺析[J];科技致富向?qū)?2013年33期

相關(guān)會議論文 前10條

1 王英奎;江春波;;泄洪洞模型進口立軸漩渦試驗研究[A];水力學(xué)與水利信息學(xué)進展 2009[C];2009年

2 張宏偉;張東;吳一紅;劉之平;;高水頭大流量泄洪洞壓力彎道的三維數(shù)值模擬研究[A];第三屆全國水力學(xué)與水利信息學(xué)大會論文集[C];2007年

3 張鵬旋;趙留香;;陸渾水庫泄洪洞裂縫發(fā)展及成因分析[A];中國水利學(xué)會第二屆青年科技論壇論文集[C];2005年

4 張躍武;趙譚;;官廳水庫輸水泄洪洞改建工程簡述[A];中國水利學(xué)會2008學(xué)術(shù)年會論文集(上冊)[C];2008年

5 孫寧;鐘谷良;;三板溪水電站泄洪洞出口邊坡穩(wěn)定分析與加固處理[A];2007年湖南水電科普論壇論文集[C];2007年

6 張庭志;;水牛家電站泄洪洞工程邊坡大滑坡分析[A];2004水利水電地基與基礎(chǔ)工程技術(shù)——中國水利學(xué)會地基與基礎(chǔ)工程專業(yè)委員會2004年學(xué)術(shù)會議論文集[C];2004年

7 閆耀庭;曹寧;;柏葉口水庫泄洪洞開挖施工質(zhì)量控制[A];混凝土面板堆石壩技術(shù)交流文集[C];2011年

8 陳念水;周恒;吳曾謀;衛(wèi)王國;;公伯峽水電站右岸旋流消能泄洪洞方案研究[A];2004年水工專委會學(xué)術(shù)交流會議學(xué)術(shù)論文集[C];2004年

9 李佳;;龍頭石水電站泄洪洞底板缺陷處理[A];2012全國水工泄水建筑物安全與病害處理技術(shù)應(yīng)用?痆C];2012年

10 張庭志;;水牛家電站泄洪洞工程邊坡大滑坡分析[A];2004水利水電地基與基礎(chǔ)工程技術(shù)[C];2004年

相關(guān)重要報紙文章 前3條

1 周鴻飛、特約記者徐景健;水電三峽指揮部完成世界最大泄洪洞開挖任務(wù)[N];人民武警報;2010年

2 記者 黃澤君;溪洛渡電站左岸泄洪洞開挖結(jié)束[N];四川日報;2010年

3 孫啟原 熊波 周鴻飛;勇立科技攻關(guān)潮頭[N];解放軍報;2011年

相關(guān)博士學(xué)位論文 前1條

1 曲景學(xué);孔板泄洪洞空化初生試驗及數(shù)值模擬研究[D];四川大學(xué);2001年

相關(guān)碩士學(xué)位論文 前10條

1 施春蓉;環(huán)境友好型內(nèi)消能工—旋流環(huán)形堰豎井泄洪洞的數(shù)值模擬[D];河北工程大學(xué);2015年

2 伍軍輝;卡基娃水電站右岸2#泄洪洞出口邊坡穩(wěn)定性及支護措施研究[D];南昌大學(xué);2016年

3 蘇小麗;泄洪洞水擊數(shù)值模擬研究[D];西北農(nóng)林科技大學(xué);2017年

4 王洪慶;泄洪洞的紊流數(shù)值模擬及試驗研究[D];西北農(nóng)林科技大學(xué);2006年

5 沙海飛;泄洪洞三維紊流數(shù)值模擬[D];河海大學(xué);2005年

6 秦子鵬;沙壩泄洪洞沉降的可靠性分析[D];西北農(nóng)林科技大學(xué);2014年

7 張鍇;采煤采空區(qū)泄洪洞結(jié)構(gòu)受力性能分析及安全性評估[D];西安建筑科技大學(xué);2014年

8 吳小麗;水平旋流泄洪洞空化特性及相似律問題的初步探討[D];西安理工大學(xué);2010年

9 胡良才;基于不同拋物線方程泄洪洞體型的試驗及數(shù)值模擬研究[D];天津大學(xué);2010年

10 石四存;公伯峽水電站右岸泄洪洞方案分析及研究[D];天津大學(xué);2003年

,

本文編號:1822540

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/1822540.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶00702***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
日本最新不卡免费一区二区| 色无极东京热男人的天堂| 国产又粗又猛又爽又黄| 久久精品国产99精品亚洲| 婷婷开心五月亚洲综合| 中文字幕日韩欧美一区| 亚洲午夜精品视频观看| 国产综合欧美日韩在线精品 | 亚洲一区二区三区熟女少妇| 美女黄片大全在线观看| 精品少妇人妻av一区二区蜜桃| 国产香蕉国产精品偷在线观看| 国产成人精品国产亚洲欧洲| 欧美日韩黑人免费观看| 欧美六区视频在线观看| 欧美国产日韩变态另类在线看| 国产精品一区二区传媒蜜臀| 日本二区三区在线播放| 国产老熟女超碰一区二区三区| 久久国内午夜福利直播| 久久大香蕉一区二区三区| 日本东京热加勒比一区二区| 在线视频三区日本精品| 青草草在线视频免费视频| 国产精品刮毛视频不卡| 午夜精品一区二区三区国产| 美女被啪的视频在线观看| 日本高清视频在线播放| 九九热视频免费在线视频| 亚洲成人免费天堂诱惑| 国产又黄又猛又粗又爽的片| 日韩欧美国产精品自拍| 韩国日本欧美国产三级 | 久久人妻人人澡人人妻| 国产精品久久精品国产| 亚洲精品美女三级完整版视频| 日韩精品一区二区三区射精| 91日韩欧美国产视频| 麻豆亚州无矿码专区视频| 成人国产一区二区三区精品麻豆| 国产在线观看不卡一区二区|