基于磁偶極子模型的三維定位技術(shù)研究
本文關(guān)鍵詞:基于磁偶極子模型的三維定位技術(shù)研究 出處:《西南科技大學(xué)》2017年碩士論文 論文類(lèi)型:學(xué)位論文
更多相關(guān)文章: 磁偶極子理論 電磁定位 非線性方程組的求解算法 數(shù)據(jù)采集LabVIEW 軟件平臺(tái)
【摘要】:基于磁偶極子模型對(duì)目標(biāo)的定位是一種具有高精度、多維度、無(wú)視線問(wèn)題的定位技術(shù),也稱(chēng)為電磁定位技術(shù)。它不僅能定位出目標(biāo)點(diǎn)的空間位置信息(x,y,z),而且還能定位出目標(biāo)點(diǎn)的姿態(tài)角(α,β,γ)。因此該技術(shù)廣泛應(yīng)用于醫(yī)療手術(shù)導(dǎo)航、移動(dòng)設(shè)備導(dǎo)航、機(jī)器人、虛擬實(shí)現(xiàn)等領(lǐng)域。根據(jù)對(duì)國(guó)內(nèi)外大量文獻(xiàn)與產(chǎn)品研究,電磁定位技術(shù)在國(guó)外已經(jīng)有相關(guān)成熟的產(chǎn)品,而反觀國(guó)內(nèi)現(xiàn)狀,還僅僅出于理論研究與實(shí)驗(yàn)探索階段。本文的工作內(nèi)容主要分為四個(gè)方面:(1)首先,本文利用磁偶極子理論建立起電磁定位計(jì)算模型,再根據(jù)法拉第電磁感應(yīng)定律建立起接收傳感器的感應(yīng)電動(dòng)勢(shì)與定位目標(biāo)點(diǎn)的位置和姿態(tài)6個(gè)未知參數(shù)之間的關(guān)系。由于磁偶極子模型在目標(biāo)點(diǎn)距離發(fā)射源比較遠(yuǎn)時(shí),模型才能成立,所以本文就定位目標(biāo)點(diǎn)到發(fā)射源的距離對(duì)定位的誤差做出了分析。(2)其次,為了將電磁定位技術(shù)的工程應(yīng)用問(wèn)題轉(zhuǎn)換為數(shù)學(xué)問(wèn)題。本文對(duì)求解電磁定位非線性方程組的相關(guān)算法進(jìn)行了研究,包括高斯-牛頓法、L-M算法、遺傳算法。利用數(shù)值分析軟件MATLAB對(duì)以上算法進(jìn)行了仿真分析。(3)再次,設(shè)計(jì)一個(gè)電磁定位系統(tǒng),同時(shí)完成了該系統(tǒng)中有關(guān)的硬件電路與軟件程序的設(shè)計(jì)。該系統(tǒng)大體分為三個(gè)部分,分別為發(fā)射系統(tǒng)、接收系統(tǒng)、數(shù)據(jù)處理系統(tǒng)。發(fā)射系統(tǒng)主要作用是建立起定位系統(tǒng)所需的磁場(chǎng)分布環(huán)境;接收系統(tǒng)的主要功能是把定位目標(biāo)點(diǎn)的電磁信號(hào)轉(zhuǎn)換為有用的電壓信號(hào);數(shù)據(jù)處理系統(tǒng)的主要功能是采集接收信號(hào)與參考信號(hào),并利用NI公司的LabVIEW軟件平臺(tái)對(duì)采集的信號(hào)進(jìn)行數(shù)字濾波等處理。(4)最后,搭建了實(shí)驗(yàn)平臺(tái)并進(jìn)行了測(cè)試。包括對(duì)目標(biāo)點(diǎn)的電壓波形的采集與顯示,以及采集信號(hào)數(shù)字濾波前后的波形顯示。對(duì)測(cè)試值與真實(shí)值進(jìn)行了比較,當(dāng)發(fā)射信號(hào)頻率為1kHz,目標(biāo)點(diǎn)距離在12厘米到70厘米內(nèi)時(shí),位置平均誤差在3.5厘米內(nèi),姿態(tài)角平均誤差在10度內(nèi),以及對(duì)誤差的來(lái)源做出了詳細(xì)的描述。
[Abstract]:The location of the target based on the magnetic dipole model is a positioning technique with high precision, multi dimension and no line of sight. It is also called electromagnetic positioning technology. It can not only locate the spatial location information of the target point (x, y, z), but also can locate the attitude angle of the target point (alpha, beta, gamma). Therefore, the technology is widely used in the fields of medical operation navigation, mobile equipment navigation, robot, virtual realization and so on. According to a large number of documents and products at home and abroad, electromagnetic localization technology has already had mature products in other countries. This thesis is mainly divided into four aspects: (1) firstly, based on the theory of magnetic dipole establish electromagnetic positioning calculation model, then established based on Faraday's law of electromagnetic induction between the position and attitude of receiving sensor, inductive electromotive force and the location of the target point 6 unknown parameters of the relationship between. Since the magnetic dipole model is far away from the target source at the target point, the model can be established. Therefore, the location error is analyzed from the location of the target point to the launch source. (2) Secondly, in order to convert the engineering application of electromagnetic positioning technology into a mathematical problem. In this paper, the relevant algorithms for solving the nonlinear equations of electromagnetic positioning are studied, including Gauss Newton, L-M algorithm and genetic algorithm. The above algorithm is simulated and analyzed by using the numerical analysis software MATLAB. (3) once again, an electromagnetic positioning system is designed, and the design of the related hardware and software programs in the system is completed. The system is divided into three parts, which are the transmitting system, the receiving system and the data processing system. The main function of launch system is to establish positioning system of magnetic field distribution required; the main function is to convert the receiving system of the electromagnetic signal into a voltage signal the location of the target point is useful; the main function of the data processing system is to collect the received signal and the reference signal, and the digital filter to process the signal by using the LabVIEW software platform NI company. (4) at last, the experimental platform was built and tested. It includes the acquisition and display of the voltage waveform of the target point, and the waveform display before and after the digital filtering of the acquisition signal. The test value is compared with the real value. When the transmitting frequency is 1kHz, and the distance between the target points is from 12 cm to 70 cm, the position average error is within 3.5 cm, the average error of the attitude angle is within 10 degrees, and the source of the error is described in detail.
【學(xué)位授予單位】:西南科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:O441
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 吳旭東;侯文生;鄭小林;彭承琳;;磁偶極子的定位模型及實(shí)驗(yàn)驗(yàn)證[J];儀器儀表學(xué)報(bào);2008年02期
2 仲維暢;磁偶極子鏈的斷裂和表面磁極的顯現(xiàn)[J];無(wú)損檢測(cè);2004年06期
3 李靜;胡先權(quán);;微小電流環(huán)與磁偶極子[J];重慶師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年04期
4 劉志環(huán);晏光輝;余虹;姜東光;;磁偶極子的遠(yuǎn)場(chǎng)[J];物理與工程;2006年04期
5 張若洵;楊洋;;磁偶極子的遠(yuǎn)場(chǎng)[J];河北北方學(xué)院學(xué)報(bào)(自然科學(xué)版);2007年04期
6 庫(kù)建剛;陳輝煌;何逵;;磁偶極子力在弱磁選過(guò)程中的作用[J];金屬礦山;2013年12期
7 王光輝;朱海;郭正東;;潛艇磁偶極子近似距離條件分析[J];海軍工程大學(xué)學(xué)報(bào);2008年05期
8 張朝陽(yáng);肖昌漢;高俊吉;周?chē)?guó)華;;磁性物體磁偶極子模型適用性的試驗(yàn)研究[J];應(yīng)用基礎(chǔ)與工程科學(xué)學(xué)報(bào);2010年05期
9 祝傳剛;劉翠華;高國(guó)興;;一種新的磁偶極子反演定位方法研究[J];青島大學(xué)學(xué)報(bào)(工程技術(shù)版);2013年04期
10 劉瑩;劉國(guó)松;;磁偶極子遠(yuǎn)場(chǎng)的嚴(yán)格數(shù)學(xué)處理[J];長(zhǎng)春工程學(xué)院學(xué)報(bào)(自然科學(xué)版);2014年02期
相關(guān)碩士學(xué)位論文 前3條
1 余樂(lè);基于磁偶極子模型的三維定位技術(shù)研究[D];西南科技大學(xué);2017年
2 李建新;基于正四面體結(jié)構(gòu)差分磁偶極子對(duì)內(nèi)窺鏡定位探頭微型化的研究[D];福州大學(xué);2003年
3 張同瑞;電磁偶極子LTE基站天線設(shè)計(jì)與實(shí)現(xiàn)[D];南京郵電大學(xué);2014年
,本文編號(hào):1347783
本文鏈接:http://sikaile.net/shoufeilunwen/benkebiyelunwen/1347783.html