天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

木質(zhì)纖維素生物質(zhì)與生物廢棄物厭氧共消化提升甲烷產(chǎn)率的機理研究

發(fā)布時間:2020-10-18 04:14
   通過預(yù)處理降低木質(zhì)纖維素類生物質(zhì)的致密結(jié)構(gòu)、提高其生物降解能力,并進行厭氧發(fā)酵是一種行之有效的處置方法,不僅能夠生產(chǎn)生物燃料,而且可以在很大程度上緩解嚴峻的環(huán)境問題。本論文研究了五種能夠提高木質(zhì)纖維素類稻草生物降解性能和甲烷產(chǎn)量的預(yù)處理方法。首先,經(jīng)過蒸汽爆破預(yù)處理的玉米秸稈和稻草秸稈,降解率相比于未處理分別提高了40.0%和62.7%。第二,經(jīng)過1.0% KOH溶液處理的稻草秸稈和1.5% KOH溶液處理的玉米秸稈,生物甲烷產(chǎn)量分別提升了 27.2%和49.9%。第三,本研究中采用了 1.5% KOH黑液(處理過程中產(chǎn)生的KOH廢液)對玉米秸稈在20℃下進行預(yù)處理,發(fā)現(xiàn)能夠有效去除木質(zhì)素、提高厭氧發(fā)酵性能。使用黑液預(yù)處理的玉米秸稈所產(chǎn)沼氣中甲烷加權(quán)平均含量以及甲烷累積產(chǎn)率與用KOH溶液處理的玉米秸稈并沒有顯著性差異,使用黑液預(yù)處理的玉米秸稈經(jīng)厭氧發(fā)酵后所得的甲烷產(chǎn)量相比未預(yù)處理提升了 52.4%。第四,高溫(60℃) KOH預(yù)處理能夠顯著地提高厭氧發(fā)酵效果,和未處理相比其甲烷產(chǎn)率提高了 56.4%。第五,高溫KOH和蒸汽爆破聯(lián)合預(yù)處理是本研究中效果最佳的預(yù)處理方法,其預(yù)處理過的玉米秸稈甲烷產(chǎn)率相比于未處理提高了 88.5%。此外,本研究還將KOH預(yù)處理過的稻草秸稈與雞糞和餐廚垃圾進行了共發(fā)酵實驗。相比于雞糞或餐廚垃圾的單一發(fā)酵,預(yù)處理過的稻草秸稈與雞糞或餐廚垃圾的共發(fā)酵對甲烷產(chǎn)率分別有7.3%和34.0%的提升。經(jīng)過1.0% KOH預(yù)處理的稻草秸稈與雞糞共發(fā)酵能夠提升3.4 mL/g VS甲烷產(chǎn)率。餐廚垃圾與1.0%KOH預(yù)處理過的稻草秸稈混合發(fā)酵,由于氮平衡表現(xiàn)出了最佳的協(xié)同作用,使甲烷產(chǎn)率顯著升高了 63.9mL/gVS。不同的動力學(xué)模型可以很好的模擬和預(yù)測原料經(jīng)過蒸汽爆破預(yù)處理、KOH預(yù)處理、聯(lián)合預(yù)處理和共發(fā)酵后的甲烷產(chǎn)率。本研究通過熱重分析、X射線衍射、傅里葉變換紅外光譜、原子力顯微鏡和掃描電子顯微鏡結(jié)合能量彌散X射線光譜等方法,比較并評估了預(yù)處理前后原料的物理化學(xué)性質(zhì)變化,這些變化很好地解釋了厭氧消化性能提高的原因。以上研究結(jié)果表明了預(yù)處理可以顯著的改善木質(zhì)纖維素類生物質(zhì)的厭氧發(fā)酵性能、提高甲烷產(chǎn)率,研究歸納了幾種預(yù)處理的方式并得到了有效數(shù)據(jù),為今后通過預(yù)處理及厭氧發(fā)酵對木質(zhì)纖維素類廢棄物資源化利用的工業(yè)化應(yīng)用提供了基礎(chǔ)。
【學(xué)位單位】:北京化工大學(xué)
【學(xué)位級別】:博士
【學(xué)位年份】:2017
【中圖分類】:X703
【文章目錄】:
摘要
Abstract
1. INTRODUCTION
    1.1. INTRODUCTION
    1.2. ANAEROBIC DIGESTION (AD) PROCEDURE
    1.3. ANAEROBIC MONO AND CODIGESTION
    1.4. FACTORS AFFECTING AD PROCESS
    1.5. TEMPERATURE
    1.6. PH INFLUENCE
    1.7. ORGANIC LOADING RATE (OLR)
    1.8. TOXICITY AND INHIBITION
    1.9. THE NATURE OF FEEDSTOCK
    1.10. ANNUAL YIELD OF STRAW IN CHINA
    1.11. ANNUAL YIELD OF ANIMALS MANURE IN CHINA
    1.12. ANNUAL YIELD OF FOOD WASTE
    1.13. PRETREATMENT OF LIGNOCELLULOSIC BIOMASS
    1.14. STEAM EXPLOSION PRETREATMENT
    1.15. ALKALINE PRETREATMENT
    1.16. OBJECTIVES
2. IMPROVE THE ANAEROBIC BIODEGRADABILITY BY COPRETREATMENT OFTHERMAL ALKALI AND STEAM EXPLOSION OF LIGNOCELLULOSIC WASTE
    2.1. INTRODUCTION
    2.2. MATERIALS AND METHODS
        2.2.1. CS AND INOCULUM
        2.2.2. THERMAL POTASSIUM HYDROXIDE PRETREATMENT
        2.2.3. CO-PRETREATMENT OF THERMAL KOH AND SE (CPTPS)
        2.2.4. BATCH AD TESTS
        2.2.5. ANALYTICAL METHODS
        2.2.6. THEORETICAL METHANE YIELDS
        2.2.7. BIODEGRADABILITY (BD)
        2.2.8. KINETICS ANALYSIS
    2.3. RESULTS AND DISCUSSION
        2.3.1. CHARACTERISTICS OF CS AND INOCULUM
        2.3.2. ANAEROBIC DIGESTION OF THERMAL POTASSIUM HYDROXIDE TREATED CORNSTOVER
        2.3.3. EFFECT OF CO-PRETREATMENT OF THERMAL KOH AND SE ON AD OF CS
        2.3.4. DIGESTION PERFORMANCE OF UNTREATED AND PRETREATED CS
        2.3.5. KINETICS ANALYSIS OF METHANE PRODUCTION
    2.4. PHYSICOCHEMICAL CHANGES OF UNTREATED, TREATED CS BY SEM, FTIR, ANDXRD
        2.4.1. SEM ANALYSIS
        2.4.2. FTIR ANALYSIS
        2.4.3. XRD ANALYSIS
    2.5. CONCLUSION
3. POTENTIAL OF BLACK LIQUOR OF POTASSIUM HYDROXIDE TO PRETREAT CORNSTOVER FOR BIOMETHANE PRODUCTION
    3.1. INTRODUCTION
    3.2. MATERIALS AND METHODS
        3.2.1. MATERIALS SUBSTRATE AND INOCULUM
        3.2.2. POTASSIUM HYDROXIDE PRETREATMENT AND BLACK LIQUOR RECYCLING
        3.2.3. ANAEROBIC DIGESTION TEST
        3.2.4. ENERGY CONTENT
        3.2.5. ANALYTICAL METHODS
        3.2.6. THEORETICAL METHANE YIELD (TMY)
        3.2.7. KINETICS MODEL
        3.2.8. STATISTICAL ANALYSIS
    3.3. RESULTS AND DISCUSSION
        3.3.1. COMPOSITION OF CS AND INOCULUM
        3.3.2. BIOGAS AND METHANE YIELD
        3.3.3. METHANE CONTENT
        3.3.4. SOLIDS RECOVERY AFTER PRETREATMENT AND DIGESTION PERFORMANCE
        3.3.5. EVALUATION OF OVERALL PRODUCTION PERFORMANCE
    3.4. PHYSICOCHEMICAL CHANGES OF UNTREATED,1.5% KOH-TREATED,AND BL-TREATED CS BY SEM, FTIR, AND XRD
        3.4.1. SEM ANALYSIS
        3.4.2. FTIR ANALYSIS
        3.4.3. XRD ANALYSIS
        3.4.4. KINETIC MODEL OF OVERALL METHANE PRODUCTION
    3.5. WATER AND KOH CONSUMPTION IN BLACK LIQUOR PROCESS
    3.6. CONCLUSION
4. STEAM EXPLOSION KINETIC EVALUATION FOR PRETREATMENT OF RICE STRAWFOR IMPROVING THE ANAEROBIC BIODEGRADABILITY OF BIOMETHANATION
    4.1. INTRODUCTION
    4.2. MATERIALS AND METHODS
        4.2.1. BIOMASS AND INOCULUM
        4.2.2. PRETREATMENT OF RS WITH SE
        4.2.3. SEVERITY FACTOR(SF)
        4.2.4. BATCH ANAEROBIC DIGESTION OF SE-TREATED RS
        4.2.5. ANALYTICAL METHODS
        4.2.6. THEORETICAL METHANE POTENTIAL YIELD AND BIODEGRADABILITY
        4.2.7. BIOMETHANE MEASUREMENT AND KINETIC ANALYSIS
        4.2.8. STATISTICAL ANALYSIS
    4.3. RESULTS AND DISCUSSION
        4.3.1. CHARACTERISTICS OF RS AND INOCULUM
        4.3.2. AD BATCH TEST FOR SE PRETREATED RS EVALUATION
        4.3.3. SEVERITY OF SE AND REGRESSION MODEL FOR TIME AND TEMPERATURE
        4.3.4. DIGESTION STABILITY OF UNTREATED AND SE-TREATED RS
        4.3.5. KINETICS OF METHANE PRODUCTION
        4.3.6. STRUCTURAL CARBOHYDRATES AND LIGNIN EVALUATION IN SOLID FRACTIONOF UNTREATED,SE-TREATED RS
        4.3.7. STRUCTURAL CARBOHYDRATES AND LIGNIN BIODEGRADATION OF UNTREATEDAND SE-TREATED RS AFTER AD
    4.4. CONCLUSION
5. PARTICIPATION OF LIGNOCELLULOSIC COMPONENTS OF WET STATEPOTASSIUM HYDROXIDE PRETREATED RICE STRAW FOR BIOCHEMICAL METHANEPRODUCTION
    5.1. INTRODUCTION
    5.2. MATERIALS AND METHODS
        5.2.1. FEEDSTOCK AND INOCULUM
        5.2.2. WET STATE POTASSIUM HYDROXIDE PRETREATMENT OF RS
        5.2.3. SOLID RECOVERY
        5.2.4. BMP TEST OF FEEDSTOCK
        5.2.5. THEORETICAL METHANE POTENTIAL YIELD
        5.2.6. ANALYTICAL METHODS
        5.2.7. BIODEGRADABILITY
        5.2.8. KINETIC MODEL
        5.2.9. DATA ANALYSIS
    5.3. RESULTS AND DISCUSSION
        5.3.1. CHARACTERISTIC OF FEEDSTOCK AND INOCULUM
        5.3.2. EFFECTIVE SUBMERSION TIME OF PRETREATMENT
        5.3.3. SOLID RECOVERY AND SOLUBLE BIOMASS AFTER PRETREATMENT
        5.3.4. WET STATE KOH PRETREATMENT INFLUENCE ON AD OF RS
        5.3.5. EVALUATION OF AD PROCESS STABILITY OF UNTREATED AND KOH TREATED
        5.3.6. Kinetic model of methane production
        5.3.7. EVALUATION OF LIGNOCELLULOSIC SOLID COMPONENTS OF RS BEFORE ANDAFTER AD
        5.3.8. UTILIZATION SOLID FRACTION OF LIGNOCELLULOSIC COMPONENTS DURING THEAD
    5.4. CONCLUSION
6. EVALUATION OF STEAM EXPLOSION AND POTASSIUM HYDROXIDEPRETREATMENT FOR ALTERATION OF PHYSICO-CHEMICAL CHARACTERISTICS OFRICE STRAW
    6.1. NTRODUCTION
    6.2. MATERIALS AND METHODS
        6.2.1. FEEDSTOCK
        6.2.2. SE PRETREATMENT
        6.2.3. WET STATE POTASSIUM HYDROXIDE PRETREATMENT OF RS
        6.2.4. XRD MEASUREMENT
        6.2.5. FTIR MEASUREMENT
        6.2.6. AFM MEASUREMENT
        6.2.7. EDS-SEM MEASUREMENT
        6.2.8. ANALYTICAL METHODS
    6.3. RESULTS AND DISCUSSION
        6.3.1 CHARACTERISTICS OF SUBSTRATE
        6.3.2 FTIR ANALYSIS
        6.3.3 AFM ANALYSIS
        6.3.4 XRD ANALYSIS
        6.3.5 EDS-SEM MEASUREMENT
    6.4. CONCLUSION
7. ANAEROBIC CODIGESTION OF PRETREATED RICE STRAW WITH CHICKENMANURE AND FOOD WASTE TO ENHANCE THE METHANE YIELD
    7.1. INTRODUCTION
    7.2. MATERIALS AND METHODS
        7.2.1. FEEDSTOCK AND INOCULUM
        7.2.2. PRETREATMENT OF RS WITH POTASSIUM HYDROXIDE
        7.2.3. ANAEROBIC MONO AND CODIGESTION TEST
        7.2.4. ANALYTICAL METHODS
        7.2.5. THEORETICAL METHANE YIELD (TMY)
        7.2.6. KINETICS MODEL
    7.3. RESULTS AND DISCUSSION
        7.3.1. COMPOSITION OF UNTREATED AND 1.0% KOH-TREATED RS,FW,CM ANDINOCULUM
        7.3.2. BMP TEST OF KOH-TREATED RS
        7.3.3. CODIGESTION OF KOH-TREATED RS WITH CM
        7.3.4. CODIGESTION OF KOH-TREATED RS WITH FW
        7.3.5. SYNERGISM AFTER CODIGESTION OF 1.0% KOH-TREATED RS WITH FW AND CM
        7.3.6. KINETIC MODEL OF METHANE PRODUCTION
    7.4. CONCLUSION
8. CONCLUSIONS
REFERENCES
ACKNOWLEDGEMENT
LIST OF PUBLICATIONS
Muhammad Abdul Hanan Siddhu (Author)
Guangqing Liu (supervisor)
附件

【參考文獻】

相關(guān)期刊論文 前1條

1 付鵬;胡松;向軍;孫路石;楊濤;張安超;張軍營;;基于FTIR分析的稻草熱解機理(英文)[J];Chinese Journal of Chemical Engineering;2009年03期



本文編號:2845784

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/2845784.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶13e7b***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com