多壁碳納米管的團聚與沉降規(guī)律及在微模型中的遷移
[Abstract]:Carbon nanotube (CNT) has been widely used in materials, electronics, medicine and other fields because of its unique physical and chemical properties, which increases the opportunity for CNT to be released into the environment. A large number of literatures have proved the toxic effects of carbon nanotubes on microorganisms, animals, plants and so on, indicating that carbon nanotubes will have a negative impact on the ecological environment. Therefore, it is of great significance to understand the environmental process of carbon nanotubes in nature, especially its agglomeration and deposition, for its safe use. In this paper, bovine serum albumin was adsorbed on the surface of multi-wall carbon nanotubes, and the agglomeration, sedimentation behavior and migration in porous media of multi-wall carbon nanotubes adsorbed with proteins were studied. The effect of electrolytes on the environmental process of multi-wall carbon nanotubes was also discussed. The agglomeration and settlement of carbon nanotubes were studied by dynamic light scattering and quartz crystal microbalance, respectively, while the migration in porous media was studied by means of micromodel. Compared with the traditional packed column experiment, the micromodel experiment can directly observe the distribution of carbon nanotube migration with time and space in porous media. The results show that the agglomeration behavior of multi-wall carbon nanotubes adsorbed with protein accords with the classical colloidal DLVO theory. The agglomeration behavior is divided into reaction control stage and diffusion control stage. In NaCl and CaCl2 solutions, the agglomeration behavior is divided into reaction control stage and diffusion control stage. The critical agglomeration concentrations of carbon nanotubes are 175 mM and 2.7 mM., respectively. The agglomeration behavior of carbon nanotubes affects the gravity deposition behavior. The NaCl and CaCl2 concentrations required for carbon nanotubes to reach the fastest gravity deposition are 400 mM and 4 mM., respectively. The interfacial settlement of carbon nanotubes on silicon dioxide surface is also in accordance with DLVO theory. The settlement behavior is divided into unfavorable settlement stage and favorable settlement stage. In NaCl and CaCl2 solutions, the critical deposition concentrations of carbon nanotubes are 100 mM and 0.9 mM., respectively. The deposition of carbon nanotubes on alumina surface is always in a favorable settlement stage. The existence of electrolytes can accelerate the agglomeration and deposition of carbon nanotubes, indicating that electrostatic interaction is the main control mechanism of agglomeration and deposition of carbon nanotubes. The migration experiment of carbon nanotube in micromodel shows that the increase of electrolyte concentration can aggravate the deposition of carbon nanotube in micromodel and weaken its migration ability. Deposition also occurs in the absence of electrolytes, which indicates that the phase transport mode of fluid movement affects the migration of carbon nanotubes in the micromodel. The agglomeration and sedimentation behavior of carbon nanotubes affect the pore deposition behavior. In addition to electrostatic action, the difference of velocity at different positions and the unique structure of carbon nanotubes also lead to the formation of aggregates of carbon nanotubes in the micromodel. The deposition distribution of carbon nanotubes in the micromodel is more uniform, and most of the deposition occurs in narrow pores, which indicates that physical blocking is the main reason for the deposition of carbon nanotubes in porous media. The effect of divalent Ca~ (2) on the agglomeration, sedimentation and pore deposition behavior of carbon nanotubes is greater than that of univalent Na, and it is more charged with carbon nanotubes than Ca~ (2) itself. The specific effect of bovine serum albumin and groups on silica surface is also one of the important reasons. It is also due to this specific effect that the rigidity of the settling layer deposited at the interface of carbon nanotubes increases rapidly in high concentration Ca~ (2) solution. This study proves that electrolytes can affect the environmental process of carbon nanotubes, and provides an important basis for predicting the environmental behavior of carbon nanotubes and evaluating their risks.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:X131
【相似文獻】
相關(guān)期刊論文 前10條
1 羅光熹;周安;馬世倫;;天然氣水化物講座(四)(孔隙介質(zhì)中的氣體水化物問題)[J];國外油田工程;1989年01期
2 班書昊,楊慧珠;小生境遺傳算法在孔隙介質(zhì)反演中的應(yīng)用研究[J];石油勘探與開發(fā);2005年02期
3 肖立志;于慧俊;劉化冰;李新;郭葆鑫;ANFEROVA S;ANFEROV V;;新型核磁共振孔隙介質(zhì)分析儀的研制[J];中國石油大學(xué)學(xué)報(自然科學(xué)版);2013年03期
4 郭大立;雙重孔隙介質(zhì)中兩相驅(qū)替理論及其計算[J];西南石油學(xué)院學(xué)報;1993年S1期
5 韓其玉,劉仲一;唐氏孔隙介質(zhì)波動理論修正[J];石油地球物理勘探;1995年03期
6 韓其玉,劉仲一,王永剛;孔隙介質(zhì)震電方程[J];石油物探;1997年S1期
7 黎水泉,徐秉業(yè);非線性雙重孔隙介質(zhì)滲流[J];巖石力學(xué)與工程學(xué)報;2000年04期
8 張宏;熱彈塑性孔隙介質(zhì)固結(jié)問題研究[J];巖石力學(xué)與工程學(xué)報;2000年S1期
9 張小莉;馮喬;王玉生;;雙孔隙介質(zhì)砂巖儲層測井響應(yīng)特征及其油氣意義[J];測井技術(shù);2006年04期
10 周建軍;周輝;邵建富;何燕華;;飽和孔隙介質(zhì)各向異性損傷細觀模型[J];遼寧工程技術(shù)大學(xué)學(xué)報(自然科學(xué)版);2010年02期
相關(guān)會議論文 前10條
1 韓其玉;劉仲一;;具有封閉孔隙的孔隙介質(zhì)界面連續(xù)條件研究[A];1994年中國地球物理學(xué)會第十屆學(xué)術(shù)年會論文集[C];1994年
2 劉仲一;韓其玉;;孔隙介質(zhì)界面封閉孔隙量與聲波反射透射關(guān)系研究[A];1994年中國地球物理學(xué)會第十屆學(xué)術(shù)年會論文集[C];1994年
3 易良坤;席道瑛;張程遠;田象燕;;唯象的孔隙介質(zhì)波動理論[A];1999年中國地球物理學(xué)會年刊——中國地球物理學(xué)會第十五屆年會論文集[C];1999年
4 關(guān)威;胡恒山;;流體-孔隙介質(zhì)交界面的參數(shù)平均法處理[A];中國力學(xué)學(xué)會學(xué)術(shù)大會'2009論文摘要集[C];2009年
5 韓其玉;牟永光;;孔隙介質(zhì)聲波模型邊界條件[A];1997年中國地球物理學(xué)會第十三屆學(xué)術(shù)年會論文集[C];1997年
6 孫晟;牛濱華;;線彈性各向同性組分孔隙介質(zhì)模型的理論研究[A];中國地球物理學(xué)會第22屆年會論文集[C];2006年
7 成家杰;肖立志;許巍;;利用核磁共振模擬結(jié)果評價孔隙介質(zhì)的離散化表征[A];第十七屆全國波譜學(xué)學(xué)術(shù)會議論文摘要集[C];2012年
8 余仕成;王克協(xié);;孔隙介質(zhì)地層含氣飽和度對聲測井曲線的影響[A];1995年中國地球物理學(xué)會第十一屆學(xué)術(shù)年會論文集[C];1995年
9 胡恒山;王治;;孔隙介質(zhì)中斷層位錯的等效體力[A];中國力學(xué)大會——2013論文摘要集[C];2013年
10 周久光;張玉君;崔志文;呂偉國;王克協(xié);;井外飽和孔隙介質(zhì)中的爆炸點源激發(fā)的聲電場[A];2008年全國聲學(xué)學(xué)術(shù)會議論文集[C];2008年
相關(guān)博士學(xué)位論文 前10條
1 王治;分層彈性與孔隙介質(zhì)中彈性波場的互易關(guān)系[D];哈爾濱工業(yè)大學(xué);2016年
2 黃琨;孔隙介質(zhì)滲流基本方程的探索[D];中國地質(zhì)大學(xué);2012年
3 孫晟;組分孔隙介質(zhì)模型及其地震波傳播理論研究[D];中國地質(zhì)大學(xué)(北京);2007年
4 凌云;介觀尺度孔隙介質(zhì)地震波衰減特征與流體識別[D];吉林大學(xué);2015年
5 鄒冠貴;孔隙介質(zhì)地震波傳播及衰減特征評價研究[D];中國礦業(yè)大學(xué)(北京);2010年
6 楊慶節(jié);雙相孔隙介質(zhì)地震波場模擬及傳播特性分析[D];吉林大學(xué);2015年
7 張生強;孔隙介質(zhì)儲層參數(shù)反演與流體識別方法研究[D];吉林大學(xué);2014年
8 關(guān)威;孔隙介質(zhì)彈性波—電磁場耦合效應(yīng)測井的波場模擬研究[D];哈爾濱工業(yè)大學(xué);2009年
9 黎水泉;彈脆塑性雙重孔隙介質(zhì)油藏流固耦合數(shù)值模擬[D];清華大學(xué);2000年
10 李學(xué)文;乳狀液在孔隙介質(zhì)中滲流規(guī)律的研究[D];大慶石油學(xué)院;2004年
相關(guān)碩士學(xué)位論文 前10條
1 董東霞;彈性波在含球型雙夾雜的雙重孔隙介質(zhì)中的散射[D];上海交通大學(xué);2014年
2 吳佳平;受預(yù)應(yīng)力雙重孔隙介質(zhì)層動力問題的研究[D];上海交通大學(xué);2014年
3 蔣佳琪;飽和孔隙介質(zhì)時域排水動力反應(yīng)的邊界元計算與應(yīng)用[D];浙江工業(yè)大學(xué);2015年
4 孫盛彬;均質(zhì)性對孔隙介質(zhì)內(nèi)CO_2泡沫液滲流特性影響的研究[D];青島科技大學(xué);2016年
5 趙永吉;柱狀雙層孔隙地層中聲電效應(yīng)測井研究[D];吉林大學(xué);2016年
6 高麗娜;含非均勻飽和孔隙層的層狀介質(zhì)中彈性波反射[D];吉林大學(xué);2016年
7 高晗;黏彈孔隙介質(zhì)波場數(shù)值模擬方法研究[D];吉林大學(xué);2016年
8 段韻達;孔隙介質(zhì)彈性波頻散和衰減的流體湍流效應(yīng)研究[D];哈爾濱工業(yè)大學(xué);2016年
9 曹瑞岐;孔隙介質(zhì)中彈性波傳播機理研究[D];國防科學(xué)技術(shù)大學(xué);2014年
10 齊迎凱;含流體孔隙介質(zhì)的地震響應(yīng)數(shù)值模擬與分析[D];成都理工大學(xué);2016年
,本文編號:2487637
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/2487637.html