粉粒噴動床半干法煙氣脫硫反應的數(shù)值模擬及氣固兩相流動PIV實驗
[Abstract]:90% of sulfur dioxide emissions come from coal burning, discharged into the air, oxidized to sulfuric acid and sulfate under appropriate meteorological conditions, forming haze weather and causing serious acid rain problems. At present, scholars from all over the world have developed various desulfurization technologies. The semi-dry flue gas desulfurization (FGD) technology with powder-particle spray bed has the advantages of high desulphurization rate, high absorption efficiency and low environmental pollution. It has become a promising desulfurization technology. In this paper, numerical simulation analysis is carried out according to the spray bed during the experiment. A mathematical model of water vaporization in the process of semi-dry flue gas desulfurization (FGD) in the spray bed was established to study the mass transfer and heat transfer in this process. Finally, the results of water vaporization in a powder-particle spray bed were obtained by using a two-fluid model. The results show that the injection zone and the outer part of the annular zone are the two most important areas for the occurrence of water vaporization. The gas water generated at the injection zone and the outer side of the annular zone enters the area around the bed with the air flow, and the volume fraction of the water phase at the inlet of the slurry and the top of the spring area is higher than that at the inlet of the slurry and the top of the spring. The gas temperature is the highest at the inlet, followed by the spray zone, the spring area and the annular zone. By simplifying the assumed desulfurization reaction process, the whole process was transformed into a mass transfer control process between the two phases, and a reaction model was established to study the desulfurization reaction characteristics in the semi-dry flue gas desulfurization process. A two-fluid model was used to simulate the desulfurization process in a powder-particle spray bed, and the simulation results were compared with the experimental results. The results show that the region with the largest distribution of liquid phase water is in the annular zone, and the main area of desulfurization reaction is also in the annular zone. The reaction products accumulate in the ring gap region and the outlet of the spray bed. When the reaction is stable, the desulfurization efficiency of the reaction is slightly higher than the simulated value in the literature, but it is still a little lower than the experimental value. It is still necessary to improve the optimization model to improve the accuracy of the calculation. The longitudinal eddy current generator is introduced into the gas-solid two-phase flow system in the jet bed, and the gas phase is expected to produce the longitudinal vortex through the longitudinal eddy current generator, thus driving the particle phase to realize the eddy current movement. In order to enhance the transverse mixing of gas and particles in the injection zone and annular zone of the spray bed. The spray bed with longitudinal vortex generator was studied by PIV technique. The results show that the longitudinal vortex generator enhances the transverse mixing of gas and particles in the injection and annular regions. When the diameter of the spoiler element is the same, the reinforcement effect of the spherical spoiler on the radial motion of the particle is better than that of the cylindrical spoiler. In the finite structure space of the spray bed, there is the optimum design size (diameter, installation distance) of the spoiler element, which makes the longitudinal eddy current enhance the radial motion of the particles in the spray bed to the best effect.
【學位授予單位】:西北大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:X701
【相似文獻】
相關期刊論文 前10條
1 張翠宣,葉京生,宋繼田;噴動床研究與進展[J];化工進展;2002年09期
2 張懷清;噴動床谷物干燥器的設計[J];化學世界;1963年11期
3 顧毓珍;噴動床干燥谷物的研究——降速階段干燥數(shù)據的分析[J];化學世界;1963年01期
4 張懷清;;噴動床干燥谷物中擴散方程的應用[J];科學通報;1963年10期
5 顧毓珍 ,沈惠子 ,詹漪珠;有導向管噴動床的流體力學與油菜籽干燥[J];化學世界;1965年01期
6 張懷清;;第二講 噴動床技術及其應用[J];沈陽化工;1986年04期
7 張懷清;;大直徑噴動床流動特性的研究近況[J];沈陽化工學院學報;1991年02期
8 張懷清;薛惠芳;田振勇;;充氣噴動床流體力學性能的研究(Ⅰ)[J];化工冶金;1991年02期
9 張懷清;;大尺寸噴動床最低噴動速度的估算[J];沈陽化工;1992年02期
10 張懷清;薛惠芳;田振勇;;充氣噴動床流體力學性能的研究(Ⅱ)[J];化工冶金;1993年03期
相關會議論文 前10條
1 魏偉勝;紀曄;徐建;鮑曉軍;;噴動床放大規(guī)律[A];中國顆粒學會2006年年會暨海峽兩岸顆粒技術研討會論文集[C];2006年
2 林誠;朱蘭瑾;;二維氣固噴動床流型的V-統(tǒng)計法辨識[A];第一屆全國化學工程與生物化工年會論文摘要集(上)[C];2004年
3 宋立麗;張少峰;劉燕;蘭艷濤;;噴動床中霧化噴嘴的數(shù)值仿真[A];中國顆粒學會第六屆學術年會暨海峽兩岸顆粒技術研討會論文集(下)[C];2008年
4 羅保林;宗祥榮;Lim;C.J.;;矩形導流管噴動床下行區(qū)的床層壓降[A];中國顆粒學會2004年年會暨海峽兩岸顆粒技術研討會會議文集[C];2004年
5 朱濤;林誠;張濟宇;;惰性粒子噴動床制備超細碳酸鈣[A];第四屆中國功能材料及其應用學術會議論文集[C];2001年
6 代欽;;極近自由表面翼型流場的PIV實驗測量[A];中國力學學會學術大會'2005論文摘要集(上)[C];2005年
7 弓志強;葛敬東;陸亞鈞;;非定常激勵對環(huán)形葉柵流動影響的PIV研究[A];第十屆全國分離流、旋渦和流動控制會議論文集[C];2004年
8 彭小勇;鄧進波;謝東;顧煒莉;;大空間建筑火災煙氣擴散的鹽水實驗與PIV測試[A];全國暖通空調制冷2004年學術文集[C];2004年
9 吳靜;張少峰;關雪濤;;噴動床半干法煙氣脫硫實驗研究[A];中國環(huán)境科學學會2006年學術年會優(yōu)秀論文集(下卷)[C];2006年
10 榮臻;鄧學鎣;王兵;馬寶峰;馬珊珊;;PIV與壁面壓力聯(lián)合測量技術在機翼搖滾研究中的應用[A];第十二屆全國實驗力學學術會議論文摘要集[C];2009年
相關博士學位論文 前7條
1 龔希武;新型多噴口環(huán)形噴動床的實驗研究與數(shù)值模擬[D];上海交通大學;2008年
2 邢力超;噴動床內半焦顆粒煙氣脫硫技術研究[D];哈爾濱工程大學;2012年
3 曹曉東;客機座艙內空氣流動特征2D-PIV實驗研究[D];天津大學;2015年
4 朱潤孺;矩形噴動床干、濕顆;旌咸匦缘腄EM方法研究[D];哈爾濱工程大學;2011年
5 甘露;循環(huán)流化床鍋爐雙噴動床式冷渣器研究[D];重慶大學;2014年
6 王乃華;新型半干法煙氣脫硫的實驗及機理研究[D];浙江大學;2002年
7 高雄發(fā);旋流式無堵塞泵優(yōu)化設計與內流場PIV試驗研究[D];江蘇大學;2017年
相關碩士學位論文 前10條
1 周遵凱;噴動床內氣固兩相流流動與傳熱特性研究[D];華北電力大學;2015年
2 姜小峰;加溫/加壓噴動床氣固流動特性研究[D];東南大學;2015年
3 趙悅棋;倒置液固噴動床流動特性的數(shù)值模擬研究[D];東北石油大學;2016年
4 焦明月;噴動床流動特性的數(shù)值模擬和實驗研究[D];華北電力大學;2016年
5 姚路;噴動床三維流動特性的CFD-DEM并行數(shù)值模擬[D];華北電力大學;2016年
6 王U,
本文編號:2449678
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/2449678.html