基于不確定性分析的地下水污染超標風險預警
發(fā)布時間:2018-11-08 09:54
【摘要】:地下水污染預測可以通過地下水污染質運移數(shù)值模擬模型予以實現(xiàn),為分析模型參數(shù)取值不確定性對模型輸出結果的影響,本文運用蒙特卡洛方法對模型輸出結果進行不確定性分析.為降低數(shù)值模擬模型復雜程度,運用靈敏度分析方法篩選對模型影響較大參數(shù)作為模型中隨機變量;為減少重復調(diào)用數(shù)值模擬模型產(chǎn)生的計算負荷,在保證一定精度前提下,運用克里格方法建立模擬模型的替代模型完成模擬過程.結果表明:應用概率密度函數(shù)積分可以估計地下水遭受污染風險與不同置信程度下污染物濃度區(qū)間.污染羽分布圖與分級污染超標風險預警圖可以分別對研究區(qū)不同等級污染覆蓋面積和研究區(qū)不同污染風險對應污染羽分布進行估計.基于污染質運移數(shù)值模擬不確定性分析的地下水污染超標風險預警可以更加客觀地對地下水污染問題進行預測.
[Abstract]:Groundwater pollution prediction can be realized by numerical simulation model of groundwater pollution transport. In order to analyze the influence of uncertainty of model parameters on model output, In this paper, the Monte Carlo method is used to analyze the uncertainty of the model output. In order to reduce the complexity of the numerical simulation model, the sensitivity analysis method is used to screen the large parameters that affect the model as the random variables in the model. In order to reduce the computational load caused by repeated call of numerical simulation model, the simulation process is completed by using the Kriging method to establish the substitute model of the simulation model on the premise of certain precision. The results show that the probability density function integral can be used to estimate the contamination risk of groundwater and the pollutant concentration interval with different confidence levels. The pollution plume distribution map and the classified pollution risk warning map can be used to estimate the pollution plume distribution corresponding to the pollution plume distribution and the pollution coverage area of different grades of pollution in the study area. Based on the uncertainty analysis of numerical simulation of pollutant transport, the risk of groundwater pollution exceeding the standard can be predicted more objectively.
【作者單位】: 吉林大學地下水與資源環(huán)境教育部重點實驗室;吉林大學環(huán)境與資源學院;
【基金】:國家自然科學基金資助項目(41372237);國家自然科學基金資助項目(41672232) 吉林大學研究生創(chuàng)新基金資助項目(2016100)
【分類號】:X523
本文編號:2318126
[Abstract]:Groundwater pollution prediction can be realized by numerical simulation model of groundwater pollution transport. In order to analyze the influence of uncertainty of model parameters on model output, In this paper, the Monte Carlo method is used to analyze the uncertainty of the model output. In order to reduce the complexity of the numerical simulation model, the sensitivity analysis method is used to screen the large parameters that affect the model as the random variables in the model. In order to reduce the computational load caused by repeated call of numerical simulation model, the simulation process is completed by using the Kriging method to establish the substitute model of the simulation model on the premise of certain precision. The results show that the probability density function integral can be used to estimate the contamination risk of groundwater and the pollutant concentration interval with different confidence levels. The pollution plume distribution map and the classified pollution risk warning map can be used to estimate the pollution plume distribution corresponding to the pollution plume distribution and the pollution coverage area of different grades of pollution in the study area. Based on the uncertainty analysis of numerical simulation of pollutant transport, the risk of groundwater pollution exceeding the standard can be predicted more objectively.
【作者單位】: 吉林大學地下水與資源環(huán)境教育部重點實驗室;吉林大學環(huán)境與資源學院;
【基金】:國家自然科學基金資助項目(41372237);國家自然科學基金資助項目(41672232) 吉林大學研究生創(chuàng)新基金資助項目(2016100)
【分類號】:X523
【相似文獻】
相關期刊論文 前6條
1 楊玉峰;污染物排放總量控制系統(tǒng)的不確定性分析[J];給水排水;1999年09期
2 曹蘆林;;BOD_5容量計算的不確定性分析[J];上海環(huán)境科學;1991年10期
3 劉毅,陳吉寧,杜鵬飛;環(huán)境模型參數(shù)識別與不確定性分析[J];環(huán)境科學;2002年06期
4 王君麗;姜國強;任秀文;李開明;;流域污染物通量測算方法研究[J];新疆環(huán)境保護;2011年02期
5 徐一劍,曾思育,張?zhí)熘?基于不確定性分析框架的動態(tài)環(huán)狀河網(wǎng)水質模型——以溫州市溫瑞塘河為例[J];水科學進展;2005年04期
6 ;[J];;年期
相關碩士學位論文 前2條
1 黨英杰;運移轉換模型的不確定性分析方法及其應用[D];長安大學;2014年
2 張雪瑩;工業(yè)水污染物控制技術途徑及不確定性分析[D];清華大學;2014年
,本文編號:2318126
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/2318126.html
最近更新
教材專著