湖泊富營(yíng)養(yǎng)化評(píng)價(jià)方法研究及其系統(tǒng)設(shè)計(jì)
[Abstract]:Economic development and industrial progress have driven social development, prompting human beings to pay more and more attention to the prevention and treatment of freshwater pollution. It is an important means to monitor and control water pollution by adopting reasonable water quality evaluation method and establishing a stable and reliable water quality evaluation system. Therefore, it is necessary to study the method of water quality grade monitoring and the design of quantitative analysis software system for the large area of lake waters. Based on this research background, this paper quantifies the complex mechanism of water pollution into some water quality parameters which have great correlation with eutrophication. Five parameters of total nitrogen (TN), total phosphorus (TP), chlorophyll a (Chl_a) and suspended substance (ss), high manganese acid (CODmn) were selected as the research variables through empirical relationship. The evaluation criteria of domestic surface water and the research parameters of this subject were used. The reference standard of lake eutrophication evaluation was established in this paper. Combined with the mainstream water quality evaluation algorithms: (TLI), single factor evaluation method and fuzzy comprehensive evaluation method BP neural network algorithm were used to evaluate water quality respectively. The key to the establishment of water quality evaluation system lies in the construction of water quality evaluation optimization model. From the point of view of optimal selection, the evaluation results of each algorithm are compared with the actual situation, and the BP algorithm is established as the original model of water quality evaluation optimization algorithm. The global optimization ability of genetic algorithm is used to make up for the accuracy difference caused by the uncertainty of initial weight and threshold of BP algorithm, and an optimized GA-BP model is constructed to evaluate the water quality. Compared with the traditional BP neural network algorithm, it shows that the hybrid GA-BP algorithm has obvious advantages in computational efficiency and evaluation accuracy. The evaluation accuracy of the optimized GA-BP model reaches 0.05 from the original 0.1, and the evaluation speed is 4 times faster. In order to construct a complete evaluation system, a water quality evaluation system is designed. The functions of the system include: system landing, reading of multi-format inversion image with massive data, data preprocessing, data saving, data operation, etc. Stable embedding of evaluation algorithm and visualization of evaluation results. IDL development platform and IDL programming language are selected to develop the system. The process and structure of the landing module and evaluation module of the system are designed. The UI interface design idea of the water quality assessment system and the layout of each menu bar are introduced in detail. At the same time, the functional and non-functional software tests are carried out on the system. The system can accurately take Longquan Lake as a sample to obtain the inversion image concentration of five evaluation parameters in the subject, and then make visual classification of water quality grade, and establish a quantitative water quality evaluation software system. Effective monitoring of large areas of water pollution. The research results provide a reliable guarantee for the R & D project of water quality monitoring in Chengdu Science and Technology Bureau.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:X824
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 俞焰;楊正健;劉德富;張佳磊;方銘;;模糊數(shù)學(xué)在抽水蓄能電站富營(yíng)養(yǎng)評(píng)價(jià)的應(yīng)用[J];環(huán)境工程;2016年S1期
2 胡序朋;邵君波;唐靜亮;王益鳴;柴小平;莊彤暉;李俊龍;;近岸海域富營(yíng)養(yǎng)化評(píng)價(jià)方法的研究進(jìn)展和比較[J];中國(guó)環(huán)境監(jiān)測(cè);2016年01期
3 馬麗;何前宏;;安昌河綿陽(yáng)段水體中TOC、COD_(Cr)、BOD_5、DO的相關(guān)關(guān)系研究[J];綿陽(yáng)師范學(xué)院學(xué)報(bào);2015年11期
4 黃磊;;基于Matlab的概率與數(shù)理統(tǒng)計(jì)分析實(shí)踐[J];湘南學(xué)院學(xué)報(bào);2015年05期
5 梁琳;周艷軍;孔祥羽;程建超;;黑龍江太平溝斷面水質(zhì)評(píng)價(jià)方法選擇[J];東北水利水電;2015年07期
6 張亞麗;周揚(yáng);程真;姚志鵬;申劍;王瀟磊;;不同水質(zhì)評(píng)價(jià)方法在丹江口流域水質(zhì)評(píng)價(jià)中應(yīng)用比較[J];中國(guó)環(huán)境監(jiān)測(cè);2015年03期
7 武創(chuàng)舉;宋雙杰;曾桂平;;神經(jīng)網(wǎng)絡(luò)算法在ENVI上的集成與優(yōu)化[J];價(jià)值工程;2015年06期
8 曾德彪;王棟;丁昊;王臘春;鄒欣慶;;水體富營(yíng)養(yǎng)化評(píng)價(jià)的多維正態(tài)云法與其他幾種方法的對(duì)比分析[J];南京大學(xué)學(xué)報(bào)(自然科學(xué));2015年01期
9 尹海潔;高云紅;;神經(jīng)網(wǎng)絡(luò)分析與相關(guān)分析、回歸分析的比較——基于大學(xué)畢業(yè)生的成就性水平及其影響因素的研究[J];江蘇社會(huì)科學(xué);2014年06期
10 王華靜;旦波;趙超;劉夢(mèng);朱亞蘭;杜鵑;李錦;徐留興;;四川省龍泉湖表層沉積物與表層水體中各種形態(tài)氮含量及其相關(guān)關(guān)系[J];水土保持通報(bào);2014年05期
相關(guān)會(huì)議論文 前1條
1 潘忠成;李敏;;HJ636-2012測(cè)定總氮時(shí)空白值偏高原因分析[A];2015年中國(guó)環(huán)境科學(xué)學(xué)會(huì)學(xué)術(shù)年會(huì)論文集(第一卷)[C];2015年
相關(guān)博士學(xué)位論文 前1條
1 王瑞富;HY-1A衛(wèi)星CCD重要河口監(jiān)測(cè)服務(wù)系統(tǒng)[D];中國(guó)海洋大學(xué);2006年
相關(guān)碩士學(xué)位論文 前10條
1 陸芳啟;鉬酸銨分光光度法檢測(cè)工業(yè)磷酸含量的建立及初步應(yīng)用[D];廣西大學(xué);2014年
2 阮嘉玲;三峽庫(kù)區(qū)泥沙過(guò)程變異對(duì)浮游植物的影響及營(yíng)養(yǎng)化評(píng)價(jià)方法研究[D];武漢輕工大學(xué);2014年
3 李華;基于氣候舒適性的川西平原傳統(tǒng)城鎮(zhèn)空間形態(tài)影響研究[D];西南交通大學(xué);2014年
4 左嬋;汾河水庫(kù)富營(yíng)養(yǎng)化模擬與研究[D];太原理工大學(xué);2014年
5 楊靜;改進(jìn)的模糊綜合評(píng)價(jià)法在水質(zhì)評(píng)價(jià)中的應(yīng)用[D];重慶大學(xué);2014年
6 石嶺嶺;結(jié)合神經(jīng)網(wǎng)絡(luò)和遺傳算法的脈沖參數(shù)尋優(yōu)與滅藻實(shí)驗(yàn)研究[D];重慶大學(xué);2013年
7 閆冬;神經(jīng)網(wǎng)絡(luò)技術(shù)在股票價(jià)格短期預(yù)測(cè)中的應(yīng)用研究[D];重慶交通大學(xué);2013年
8 孔艷婷;基于MapGIS遙感圖像分析處理研究[D];內(nèi)蒙古科技大學(xué);2012年
9 郭楊亮;多波段遙感圖像在土地利用中的應(yīng)用研究[D];西安科技大學(xué);2012年
10 王瑞;基于遺傳優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的污水處理水質(zhì)預(yù)測(cè)研究[D];華南理工大學(xué);2012年
,本文編號(hào):2156423
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/2156423.html